pandas取dataframe特定行/列】的更多相关文章

1. 按列取.按索引/行取.按特定行列取 import numpy as np from pandas import DataFrame import pandas as pd df=DataFrame(np.arange(12).reshape((3,4)),index=['one','two','thr'],columns=list('abcd')) df['a']#取a列 df[['a','b']]#取a.b列 #ix可以用数字索引,也可以用index和column索引 df.ix[0]#…
比如,想要取某文件10-20行 可以用sed sed -n '10,20p' XXX.txt 非常方便!…
使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame 如果我们想要像Excel的筛选那样,只要其中的一行或某几行,可以使用isin()方法,将需要的行的值以列表方式传入,还可以传入字典,指定列进行筛选. 但是如果我们只想要所有内容中不包含特定行的内容,却并没有一个isnotin()方法.我今天的工作就遇到了这样的需求,经常查找之后,发现只能换种方式使用isin()来实现这个需求. 示例如下: In [3]: df = pd.DataFrame([['GD…
numpy广播机制,取特定行.特定列的元素 的高级索引取法 enter description here enter description here…
在<Python进行数据分析与挖掘实战>一书中,第10章 删除热水器不工作的数据(水流量为0并且开关机状态为“关”的数据.) import pandas as pd data=pd.read_excel('E:\siren\Python dataAnalyst\chapter10\demo\data\original_data.xls',sheetname='原始数据') data=data.drop(['有无水流','热水器编号','节能模式'],axis=1) #删除掉开关机状态为“关”且…
转自:http://blog.csdn.net/u011089523/article/details/60341016 用pandas中的DataFrame时选取行或列: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd…
1.Pandas对数据某一列删除 1.删除列 import pandas as pd df = pd.read_csv(file) #axis=1就是删除列 df.drop(['列名1','列名2'], axis=1) 2.删除记录,也就是行 import pandas as pd df = pd.read_csv(file) #axis=0就是删除记录也就是行 df.drop([0,1,3], axis=0) 2.Pandas之修改列名 1.第一种是没有表头,想要添加表头 因为csv文件是没有…
用pandas中的DataFrame时选取行或列: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是S…
原始数据如下: (图是从 excel 截的,最左1行不是数据,是 excel 自带的行号,为了方便说明截进来的) 除去首行是标题外,有效数据为 28行 x 4列 目前的需求是根据 partition 分组,然后取每组的前 2 行,如果不考虑排序,代码如下: (把head()里面的数字改成 n 就可以取 n 行) import pandas as pd esp_df = pd.read_excel('excel文件路径', sheet_name='Sheet名') esp_df.groupby([…
导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFrame(np.random.randn(4, 5), columns=['A', 'B', 'C', 'D', 'E']) DataFrame数据预览: A B C D E 0 0.673092 0.230338 -0.171681 0.312303 -0.184813 1 -0.504482 -0.…