一.前言 为了更好的理解Neural Network,本文使用Tensorflow实现一个最简单的神经网络,然后使用MNIST数据集进行测试.同时使用Tensorboard对训练过程进行可视化,算是打响学习Tensorflow的第一枪啦. 看本文之前,希望你已经具备机器学习和深度学习基础. 机器学习基础可以看我的系列博文: https://cuijiahua.com/blog/ml/ 深度学习基础可以看吴恩达老师的公开课: http://mooc.study.163.com/smartSpec/…
边学习边笔记 https://www.cnblogs.com/felixwang2/p/9190602.html # https://www.cnblogs.com/felixwang2/p/9190602.html # TensorFlow(十):卷积神经网络实现手写数字识别以及可视化 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.rea…
上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字识别的计算机视觉问题,评价我们搭建的模型的标准是它是否能准确的对手写数字图片进行识别. 其具体的过程是:先使用已经提供的训练数据对搭建好的神经网络模型进行训练并完成参数优化,然后使用优化好的模型对测试数据进行预测,对比预测值和真实值之间的损失值,同时计算出结果预测的准确率.在将要搭建的模型中会使用到…
初次接触TensorFlow,而手写数字训练识别是其最基本的入门教程,网上关于训练的教程很多,但是模型的测试大多都是官方提供的一些素材,能不能自己随便写一串数字让机器识别出来呢?纸上得来终觉浅,带着这个疑问昨晚研究了下,利用这篇文章来记录下自己的一些心得! 以下这个图片是我随机写的一串数字,我的目标是利用训练好的模型来识别出图片里面的手写数字,开始实战! 2层卷积神经网络的训练: from tensorflow.examples.tutorials.mnist import input_data…
官方文档: MNIST For ML Beginners - https://www.tensorflow.org/get_started/mnist/beginners Deep MNIST for Experts - https://www.tensorflow.org/get_started/mnist/pros 版本: TensorFlow 1.2.0 + Flask 0.12 + Gunicorn 19.6 相关文章: TensorFlow 之 入门体验 TensorFlow 之 手写…
首先,关于神经网络,其实是一个结合很多知识点的一个算法,关于cnn(积卷神经网络)大家需要了解: 下面给出我之前总结的这两个知识点(基于吴恩达的机器学习) 代价函数: 代价函数 代价函数(Cost Function )是定义在整个训练集上的,是所有样本误差的平均,也就是损失函数的平均. 具体的了解请看我的博客: https://blog.csdn.net/qq_40594554/article/details/97389489 梯度下降: 梯度下降一般讲解采用单变量梯度下降,但是一般在程序中常用…
1.导包 import numpy as np import operator from os import listdir from sklearn.neighbors import KNeighborsClassifier as KNN %config ZMQInteractiveShell.ast_node_interactivity='all' 2.定义将图像转换成向量的函数 """ 函数说明:将32x32的二进制图像转换成1x1024向量 Parameters: f…
MNIST手写数字识别 MNIST数据集介绍和下载:http://yann.lecun.com/exdb/mnist/   一.数据集介绍: MNIST是一个入门级的计算机视觉数据集 下载下来的数据集被分成两部分:60000行的训练数据集(mnist.train)和10000行的测试数据集(mnist.test)   二.TensorFlow实现MNIST手写数字识别 (1)构建一个只有输入层和输出层的简单神经网络模型,使用二次代价函数和梯度下降算法进行优化:代码如下: #TensorFlow实…
提示:建议先看day36-38的内容 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor).它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等. TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机…
模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基于tensorflow来介绍和演示 请尊重原创,转载请注明来源网站www.shareditor.com以及原始链接地址 什么是tensorflow tensor意思是张量,flow是流. 张量原本是力学里的术语,表示弹性介质中各点应力状态.在数学中,张量表示的是一种广义的"数量",0阶张量…