意义 在机器学习任务中选择计算模型或者学习数学时,可视化有助于研究函数值的变化趋势(观察收敛.分布.几何形状等),带来直观的感受. 源码 # 绘制二元函数 # 参考文献 # + python画二元函数的图像(3D) https://blog.csdn.net/your_answer/article/details/79135076 from mpl_toolkits.mplot3d import Axes3D import numpy as np from matplotlib import p…
摘要:总结股票均线计算原理--线性关系,也是以后大数据处理的基础之一,NumPy的 linalg 包是专门用于线性代数计算的.作一个假设,就是一个价格可以根据N个之前的价格利用线性模型计算得出. 前一篇,在计算均线,指数均线时,分别计算了不同的权重,比如 和 都是按不同的计算方法来计算出相关的权重,一个股价可以用之前股价的线性组合表示出来,也即,这个股价等于之前的股价与各自的系数相乘后再做加和的结果,但是,这些系数是需要我们来确定的,也即一个线性相关的权重.一.用线性模型预测价格创建步骤如下:1…
给出一个数组x,然后基于一个二次函数,加上一些噪音数据得到另一组数据y. 将得到的数组x,y,构建一个机器学习模型,采用梯度下降法,通过多次迭代,学习到函数的系数.使用python和numpy进行编程,具体实现的代码如下: import numpy as np %matplotlib inline from matplotlib import pyplot as plt np.random.seed(100) x=np.linspace(-1,1,100).reshape(100,1) y=3n…
成交量(volume)是投资中一个非常重要的变量,它是指在某一时段内具体的交易数,可以在分时图中绘制,包括日线图.周线图.月线图甚至是5分钟.30分钟.60分钟图中绘制. 股票市场成交量的变化反映了资金进出市场的情况,成交量是判断市场走势的重要指标.一般情况下,成交量大且价格上涨的股票,趋势向好.成交量持续低迷时,一般出现在熊市或股票整理阶段,市场交易不活跃.成交量是判断股票走势的重要依据,对分析主力行为提供了重要的依据.投资者对成交量异常波动的股票应当密切关注. OBV(On-Balance…
摘要:NumPy中包含大量的函数,这些函数的设计初衷是能更方便地使用,掌握解这些函数,可以提升自己的工作效率.这些函数包括数组元素的选取和多项式运算等.下面通过实例进行详细了解. 前述通过对某公司股票的收盘价的分析,了解了某些Numpy的一些函数.通常实际中,某公司的股价被另外一家公司的股价紧紧跟随,它们可能是同领域的竞争对手,也可能是同一公司下的不同的子公司.可能因两家公司经营的业务类型相同,面临同样的挑战,需要相同的原料和资源,并且争夺同类型的客户. 实际中,有很多这样的例子,如果要检验一下…
numpy.apply_along_axis(func, axis, arr, *args, **kwargs): 必选参数:func,axis,arr.其中func是我们自定义的一个函数,函数func(arr)中的arr是一个数组,函数的主要功能就是对数组里的每一个元素进行变换,得到目标的结果. 其中axis表示函数func对数组arr作用的轴. 可选参数:*args, **kwargs.都是func()函数额外的参数. 返回值:numpy.apply_along_axis()函数返回的是一个…
今天详解一个 Python 库 Streamlit,它可以为机器学习和数据分析构建 web app.它的优势是入门容易.纯 Python 编码.开发效率高.UI精美. 上图是用 Streamlit 构建自动驾驶模型效果的 demo,左侧是模型的参数,右侧是模型的效果.通过调整左侧参数,右边的模型会实时地响应. 由此可以看出,对于交互式的数据可视化需求,完全可以考虑用 Streamlit 实现.特别是在学习.工作汇报的时候,用它的效果远好于 PPT. 因为 Streamlit 提供了很多前端交互的…
在NumPy中,矩阵是 ndarray 的子类,与数学概念中的矩阵一样,NumPy中的矩阵也是二维的,可以使用 mat . matrix 以及 bmat 函数来创建矩阵. 一.创建矩阵 mat 函数创建矩阵时,若输入已为 matrix 或 ndarray 对象,则不会为它们创建副本. 因此,调用 mat() 函数和调用 matrix(data, copy=False) 等价. 1) 在创建矩阵的专用字符串中,矩阵的行与行之间用分号隔开,行内的元素之间用空格隔开.使用如下的字符串调用 mat 函数…
摘要:先汇总相关股票价格,然后有选择地对其分类,再计算移动均线.布林线等. 一.汇总数据 汇总整个交易周中从周一到周五的所有数据(包括日期.开盘价.最高价.最低价.收盘价,成交量等),由于我们的数据是从2020年8月24日开始导出,数据多达420条,先截取部分时间段的数据,不妨先读取开始20个交易日的价格.代码如下: import numpy as np from datetime import datetime def datestr2num(s): #定义一个函数 return dateti…
numpy库数组拼接np.concatenate 原文:https://blog.csdn.net/zyl1042635242/article/details/43162031 思路:numpy提供了numpy.concatenate((a1,a2,...), axis=0)函数.能够一次完成多个数组的拼接.其中a1,a2,...是数组类型的参数 示例3: >>> a=np.array([1,2,3])>>> b=np.array([11,22,33])>>…