P1038 神经网络[拓扑]】的更多相关文章

题目背景 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应用.对神经网络的研究一直是当今的热门方向,兰兰同学在自学了一本神经网络的入门书籍后,提出了一个简化模型,他希望你能帮助他用程序检验这个神经网络模型的实用性. 题目描述 在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经元之间至多有一条边相连,下图是一个神经元的例子: 神经元[编号为1) 图中,X1​−X3…
P1038 神经网络 题目背景 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应用.对神经网络的研究一直是当今的热门方向,兰兰同学在自学了一本神经网络的入门书籍后,提出了一个简化模型,他希望你能帮助他用程序检验这个神经网络模型的实用性. 题目描述 在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经元之间至多有一条边相连,下图是一个神经元的例子: 神经元[编号为1…
P1038 神经网络 题目背景 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应用.对神经网络的研究一直是当今的热门方向,兰兰同学在自学了一本神经网络的入门书籍后,提出了一个简化模型,他希望你能帮助他用程序检验这个神经网络模型的实用性. 题目描述 在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经元之间至多有一条边相连,下图是一个神经元的例子: 神经元[编号为1…
P1038 神经网络 题目背景 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应用.对神经网络的研究一直是当今的热门方向,兰兰同学在自学了一本神经网络的入门书籍后,提出了一个简化模型,他希望你能帮助他用程序检验这个神经网络模型的实用性. 题目描述 在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经元之间至多有一条边相连,下图是一个神经元的例子: 神经元[编号为1…
题目背景 人工神经网络(Artificial Neural NetworkArtificialNeuralNetwork)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应用.对神经网络的研究一直是当今的热门方向,兰兰同学在自学了一本神经网络的入门书籍后,提出了一个简化模型,他希望你能帮助他用程序检验这个神经网络模型的实用性. 题目描述 在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经元之间至多有一条边相连,下图是一个神经元的…
题目背景 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应用.对神经网络的研究一直是当今的热门方向,兰兰同学在自学了一本神经网络的入门书籍后,提出了一个简化模型,他希望你能帮助他用程序检验这个神经网络模型的实用性. 题目描述 在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经元之间至多有一条边相连,下图是一个神经元的例子: 神经元[编号为1) 图中,X1―X3是…
题目背景 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应用.对神经网络的研究一直是当今的热门方向,兰兰同学在自学了一本神经网络的入门书籍后,提出了一个简化模型,他希望你能帮助他用程序检验这个神经网络模型的实用性. 题目描述 在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经元之间至多有一条边相连,下图是一个神经元的例子: 神经元[编号为1) 图中,X1―X3是…
qwq 拓扑排序模板题. 拓扑排序,是在一个$DAG$中,其拓扑排序为其所有结点的一个线性排序(答案不唯一). 该排序满足这样的条件——对于图中的任意两个结点$u$和$v$,若存在一条有向边从$u$指向$v$,则在拓扑排序中$u$一定出现在$v$前面. 就好比一张流程图,必须完成这一步之前的所有步骤才能进行这一步. 代码实现:记录入度,每次走过一条边$(u,v)$将$v$的入度-1,入读为0时加入队列. 对于这道题,判断某个神经元是否兴奋(能继续传递)必须先走过到达这个神经元的每一条神经,恰好满…
题目 这个题不得不说是一道大坑题,为什么这么说呢,这题目不仅难懂,还非常适合那种被生物奥赛刷下来而来到信息奥赛的学生. 因此我们先分析一下题目的坑点. 1: 题目的图分为输入层,输出层,以及中间层. 我们怎么判断呢???可以判断每个点的入度及出度.如果一个点的入度为零则它是输入层,出度为零则是输出层.其余情况便是中间层. 因为根据原题所描述的 公式中的 Wji​ (可能为负值)表示连接 j 号神经元和 i 号神经元的边的权值. 当 C_i 大于 0 时,该神经元处于兴奋状态,否则就处于平静状态.…
传送门啦 一个拓扑排序的题,感觉题目好难懂... #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int maxn = 105; inline int read(){char ch = getchar();int f = 1 , x = 0;while(ch > '9' || ch <…