假设有10个三维的点,使用数组存放它们有四种常见的形式: ①一个二维数组,数组的类型是CV32FC1,有n行,3列(n×3) ②类似①,也可以用一个3行n列(3×n)的二维数组 ③④用一个n行1列(n×1)的数组或者1行n列(1×n)的数组,数组的类型是CV32FC3 四种形式的内存布局如下图: <学习OpenCV>中给出的计算给定点的公式如下: 说明: 其中row col channel分别表示行号 列号 和通道号: 这些都已从0开始计算,具体如下: 通道号channel=所在的维数(X或Y…
最近一段时间学习并做的都是对图像进行处理,其实自己也是新手,各种尝试,所以我这个门外汉想总结一下自己学习的东西,图像处理的流程.但是动起笔来想总结,一下却不知道自己要写什么,那就把自己做过的相似图片搜索的流程整理一下,想到什么说什么吧. 首先在进行图片灰度化处理之前,我觉得有必要了解一下为什么要进行灰度化处理. 图像灰度化的目的是什么? 将彩色图像转化为灰度图像的过程是图像的灰度化处理.彩色图像中的每个像素的颜色由R,G,B三个分量决定,而每个分量中可取值0-255,这样一个像素点可以有1600…
http://blog.csdn.net/lindazhou2005/article/details/1534234 文中有提到鲁棒性 http://blog.csdn.net/chary8088/article/details/24935559…
部分 VI视频分析 OpenCV-Python 中文教程(搬运)目录 39 Meanshift 和 和 Camshift 目标 • 本节我们要学习使用 Meanshift 和 Camshift 算法在视频中找到并跟踪目标对象39.1 Meanshift Meanshift 算法的基本原理是和很简单的.假设我们有一堆点(比如直方图反向投影得到的点),和一个小的圆形窗口,我们要完成的任务就是将这个窗口移动到最大灰度密度处(或者是点最多的地方).如下图所示: 初始窗口是蓝色的“C1”,它的圆心为蓝色方…
OpenCV中图像算术操作与逻辑操作 在图像处理中有两类最重要的基础操作各自是图像点操作与块操作.简单点说图像点操作就是图像每一个像素点的相关逻辑与几何运算.块操作最常见就是基于卷积算子的各种操作.实现各种不同的功能.今天小编就跟大家一起学习OpenCV中图像点操作相关的函数与应用场景. 常见算术运算包含加.减.乘.除,逻辑运算包含与.或.非.异或. 准备工作: 选择两张大小一致的图像例如以下.载入成功以后显演示样例如以下: 加法操作结果例如以下: 减法操作结果例如以下: 乘法操作结果例如以下:…
http://www.cnblogs.com/tiandsp/archive/2013/04/20/3031862.html [学习opencv]高斯.中值.均值.双边滤波 四种经典滤波算法,在opencv文档中都能找到的,熟悉一下调用规范. #include "cv.h" #include "highgui.h" #include <iostream> using namespace std; using namespace cv; int main(…
kmeans算法的原理参考:http://www.cnblogs.com/mikewolf2002/p/3368118.html 下面学习一下opencv中kmeans函数的使用.      首先我们通过OpenCV中的随机数产生器RNG,生成一些均匀分布的随机点,这些点的位置对应一副图像中的像素位置,然后使用kmeans算法对这些随机点进行分类,并计算出分类簇的中心点.      随机产生的簇的数量是2到5之间的值,采样点的数量范围是1-1000,一维矩阵centers存放kmeans算法结束…
今天上午,结合OpenCV自带的camshitf例程,简单的对camshitf有了一个大致的认识和理解,现总结如下: 1:关于HSV H指hue(色相).S指saturation(饱和度).V指value(色调). 色相(H)是色彩的基本属性,就是平常所说的颜色名称,如红色.黄色等: 饱和度(S)是指色彩的纯度,越高色彩越纯,低则逐渐变灰,取0-100%的数值: 明度(V)取0-100%. RGB 和 CMYK 分别是加法原色和减法原色模型,以原色组合的方式定义颜色,而 HSV 以人类更熟悉的方…
前言: PCA是大家经常用来减少数据集的维数,同时保留数据集中对方差贡献最大的特征来达到简化数据集的目的.本文通过使用PCA来提取人脸中的特征脸这个例子,来熟悉下在oepncv中怎样使用PCA这个类. 开发环境:ubuntu12.04+Qt4.8.2+QtCreator2.5.1+opencv2.4.2 PCA数学理论: 关于PCA的理论,资料很多,公式也一大把,本人功底有限,理论方面这里就不列出了.下面主要从应用的角度大概来讲讲具体怎么实现数据集的降维. 把原始数据中每个样本用一个向量表示,然…
阅读对象:对概率论中的期望有一点了解. 1.图像几何矩 1.1简述 图像的几何矩包括空间矩.中心矩和中心归一化矩.几何矩具有平移.旋转和尺度不变性,一般是用来做大粒度的区分,用来过滤显然不相关的图像. 1.2用数学语言阐述图像的几何矩 针对于一幅图像,我们把像素的坐标看成是一个二维随机变量(X,Y),那么一幅灰度图像可以用二维灰度密度函数来表示,每个像素点的值可以看成是该处的密度,对某点求期望就是该图像在该点处的矩(原点矩),一阶矩和零阶矩可以计算某个形状的重心,二阶矩可以计算形状的方向,因此可…