题解【洛谷P3385】【模板】负环】的更多相关文章

题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个顶点,M条边 接下来M行,每行三个整数a b w,表示a->b有一条权值为w的边(若w<0则为单向,否则双向) 输出格式: 共T行.对于每组数据,存在负环则输出一行"YE5"(不含引号),否则输出一行"N0"(不含引号). 输入输出样例 输入样例#1: 2…
题目:https://www.luogu.org/problemnew/show/P3385 两种方法,dfs和bfs: 一开始写的dfs,要把dis数组初值赋成0,这样从一个连着负边的点开始搜: 在一个负环上,一定会有一个点,从它开始绕环走,dis值一直为负,根据这个找环: 但是数据太强了,过不了: #include<iostream> #include<cstdio> #include<cstring> using namespace std; ,MAXM=; in…
题目链接 判断一张图中是否存在关于顶点1的负环: 可以用SPFA跑一遍,存在负环的情况就是点进队大于n次 因为在存在负环的情况下,SPFA会越跑越小,跑进死循环 在最差的情况下,存在的负环长度是“n+1个顶点”这么长 rt: 显然这是n个点长度,但不是环: 这就是一个环,n+1个点的长度; 所以代码很明了了,只需将一般SPFA改动一点饥渴CODE: #include<bits/stdc++.h>万能头,懒得打很多头文件 using namespace std; //数据是骗人的,要开大.. ;…
题目描述 暴力枚举/\(SPFA\)/\(Bellman-ford\)/奇怪的贪心/超神搜索 寻找一个从顶点1所能到达的负环,负环定义为:一个边权之和为负的环. 输入输出格式 输入格式 第一行一个正整数\(T\)表示数据组数,对于每组数据: 第一行两个正整数\(N\) \(M\),表示图有\(N\)个顶点,\(M\)条边 接下来\(M\)行,每行三个整数\(a\) \(b\) \(w\),表示\(a->b\)有一条权值为\(w\)的边(若\(w<0\)则为单向,否则双向) 输出格式 共\(T\…
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含三个整数N.M.P,分别表示该数列数字的个数.操作的总个数和模数. 第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值. 接下来M行每行包含3或4个整数,表示一个操作,具体如下: 操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k 操作2: 格式:…
P3385 [模板]负环 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 寻找一个从顶点1所能到达的负环,负环定义为:一个边权之和为负的环. 输入格式 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个顶点,M条边 接下来M行,每行三个整数a b w,表示a->b有一条权值为w的边(若w<0则为单向,否则双向) 输出格式 共T行.对于每组数据,存在负环则输出一行"YE5"(不含引号),否则输出一行"N…
洛谷题目传送门 HNOI爆零前回刷模板题 非常不正经的题目,目前并没有合适的优秀算法,就算是大家公认的dfs(还是不要强行叫dfs-spfa吧,概念应该不一样,这就是暴力dfs松弛答案) 但是对于随机数据来说,dfs有着优秀的效率,可以快速发现负环并退出 从每个点开始暴力dfs,记一个bool数组ins表示每个点是否在搜索栈中.如果发现可以松弛并且踏进了已经在栈中的点就说明找到了负环. 注意几点: YE5和N0 2333 dis初始化为0,因为只要判负环,正权一开始并不用松弛 因为并没有说图连通…
P3385 [模板]负环 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个顶点,M条边 接下来M行,每行三个整数a b w,表示a->b有一条权值为w的边(若w<0则为单向,否则双向) 输出格式: 共T行.对于每组数据,存在负环则输出一行"YE5"(不含引号),否则输出一行"N0"(不含引号). 输入输出样例 输入样…
题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个顶点,M条边 接下来M行,每行三个整数a b w,表示a->b有一条权值为w的边(若w<0则为单向,否则双向) 输出格式: 共T行.对于每组数据,存在负环则输出一行"YE5"(不含引号),否则输出一行"N0"(不含引号). 输入输出样例 输入样例#1: 2 3 4 1…
题意:有一个\(n\)个点的有向图,从\(1\)出发,问是否有负环. 题解:我们可以用SPFA来进行判断,在更新边的时候,同时更新路径的边数,因为假如有负环的话,SPFA这个过程一定会无限重复的遍历这个环,那么这个环中的边数也就会不断增加,因为我们只有\(n\)个点,所以假如某条路径的边数\(\ge n\)时,就说明有点重复使用了,也就说明一定存在负环.这题让我们从1开始走,所以只要对1初始化一下就行了. 代码: struct misaka{ int out; int val; }e; int…