题意:求A + A^2 + A^3 + ... + A^m. 析:主要是两种方式,第一种是倍增法,把A + A^2 + A^3 + ... + A^m,拆成两部分,一部分是(E + A^(m/2))(A + A^2 + A^3 + ... + A^(m/2)),然后依次计算下去,就可以分解,logn的复杂度分解,注意要分奇偶. 另一种是直接构造矩阵,,然后就可以用辞阵快速幂计算了,注意要用分块矩阵的乘法. 代码如下: 倍增法: #pragma comment(linker, "/STACK:10…
https://vjudge.net/problem/UVA-11149 题意: 输入一个n×n矩阵A,计算A+A^2+A^3+...A^k的值. 思路: 矩阵倍增法. 处理方法如下,一直化简下去直到变成A. 代码如下: Matrix solve(Matrix base,int x) { )return base; Matrix temp=solve(); Matrix sum=add(temp,multi(pow(),temp)); ) sum=add(pow(base,x),sum); re…
题目链接: 传送门 Power of Matrix Time Limit: 3000MS      Description 给一个n阶方阵,求A1+A2+A3+......Ak. 思路 A1+A2+...+An = (A1+A2+...+An/2)+(A1+A2+...+An/2) * An/2 = (1 + An/2 ) * (A1+A2+...+An/2)那么对于 (A1+A2+...+An/2)也能用同样的方法去求,不断对半下去计算,最后总体复杂度为log(n)^2 #include<io…
UVA 11149 - Power of Matrix 题目链接 题意:给定一个n*n的矩阵A和k,求∑kiAi 思路:利用倍增去搞.∑kiAi=(1+Ak/2)∑k/2iAi,不断二分就可以 代码: #include <cstdio> #include <cstring> const int N = 45; int n, k; struct mat { int v[N][N]; mat() {memset(v, 0, sizeof(v));} mat operator * (ma…
B - generator 1 题意 给你\(x_{0}.x_{1}.a.b.b.mod\),根据\(x_{i} = a*x_{i-1} + b*x_{i-2}\)求出\(x_{n}\) 思路 一般看到这种题就会想到矩阵快速幂,但是这次的\(n\)太大了,所以要用十进制倍增来算,但是单单用十进制倍增来算应该还会\(TLE\),然后就要用二进制倍增来优化了. 我们要先求出矩阵快速幂的通项式 \[ \begin{pmatrix}x_{n+1} \\x_{n}\end{pmatrix}= \begin…
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d      C D   =   c*A+d*C  c*A+d*C 上代码 struct matrix { ll a[maxn][maxn]; }; matrix matrix_mul(matrix x,matrix y) { matrix temp; ;i<=n;i++) ;j<=n;j++) { tem…
Cellular Automaton Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 3048   Accepted: 1227 Case Time Limit: 2000MS Description A cellular automaton is a collection of cells on a grid of specified shape that evolves through a number of dis…
题意:个n个方块涂色, 只能涂红黄蓝绿四种颜色,求最终红色和绿色都为偶数的方案数. 该题我们可以想到一个递推式 .   设a[i]表示到第i个方块为止红绿是偶数的方案数, b[i]为红绿恰有一个是偶数的方案数, c[i]表示红绿都是奇数的方案数. 那么有如下递推可能: 递推a[i+1]:1.到第i个为止都是偶数,且第i+1个染成蓝或黄:2.到第i个为止红绿恰有一个是奇数,并且第i+1个方块染成了奇数对应的颜色. 递推b[i+1]:1.到第i个为止都是偶数,且第i+1个染成红或绿:2.到第i个为止…
基础矩阵快速幂何必看题解 #include <bits/stdc++.h> using namespace std; /* 0 1 2 3 4 5 6 7 0 0 0 */ const int mod=10007; struct asd{ int num[4][4]; }; asd mul(asd a,asd b) { asd ans; memset(ans.num,0,sizeof(ans.num)); for(int i=0;i<4;i++) for(int j=0;j<4;j…
讲快速幂的时候就提到矩阵快速幂了啊,知道是个好东西,但是因为当时太蒟(现在依然)没听懂.现在把它补上. 一.矩阵快速幂 首先我们来说说矩阵.在计算机中,矩阵通常都是用二维数组来存的.矩阵加减法比较简单易懂,两个矩阵相加减就是两个行列数均相等的矩阵的对应位置的数相加减. 矩阵乘法就有些复杂了.它有一些特殊的要求,要求参与矩阵乘法运算的第一个矩阵的列数等于第二个矩阵的行数.所得的矩阵列数为第一个矩阵的列数,行数为第二个矩阵的行数. 举个栗子. 另外矩阵乘法有一些性质.满足结合律与分配律,不满足交换律…
转载:http://blog.csdn.net/wdcjdtc/article/details/39318847 之前各种犯傻 推了好久这个东西.. 后来灵关一闪  就搞定了.. 矩阵的题目,就是构造矩阵比较难想! 题意:给出一个矩阵的第一列和第一行(下标从0开始),(0,0)位置为0, 第一行为,233,2333,23333...一次加个3, 第一列为输入的n个数. 然后从(1,1)位置开始,等于上面的数加左边的数,问(n+1,m+1)的数是多少,也就是右下角的数 思路: 把矩阵画出来: |…
链接:http://poj.org/problem?id=1330 题意:q次询问求两个点u,v的LCA 思路:LCA模板题,首先找一下树的根,然后dfs预处理求LCA(u,v) AC代码: #include<iostream> #include<algorithm> #include<cmath> #include<cstring> #include<set> #include<string> #include<vector&…
题意: 给出一个\(n \times n\)的矩阵\(A\),求\(A+A^2+A^3+ \cdots + A^k\). 分析: 这题是有\(k=0\)的情况,我们一开始先特判一下,直接输出单位矩阵\(E\). 下面讨论\(k > 0\)的情况: 方法一 设答案为\(S_k(k > 0)\) 把矩阵增广一下 \(\begin{bmatrix} A & O \\ E & E \end{bmatrix} \begin{bmatrix} A^n\\ S_{n-1} \end{bmat…
Atcoder 题面传送门 & 洛谷题面传送门 这是一道难度 Cu 的 AGC E,碰到这种思维题我只能说:not for me,thx 然鹅似乎 ycx 把题看错了? 首先这个平方与乘法比较喜闻乐见,很容易与组合联系在一起,于是我们不妨把题目条件翻译成组合的语言: 有一排 \(n\) 个格子,你要在其中插入若干个隔板将其隔成若干段 有 \(m\) 个特殊格子 \(a_1,a_2,\dots,a_m\),\(\forall i\in [1,m]\) 你禁止在 \(a_i\) 与 \(a_{i}+…
Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 27277   Accepted: 11143 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test ca…
Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 170    Accepted Submission(s): 99 Problem Description    One day, Alice and Bob felt bored again, Bob knows Alice is a…
#include<iostream> #include<cstring> #include<cstdio> #include<vector> using namespace std; #define maxn 200005 struct Edge{ int to,next,c; }edge[maxn<<]; int dp[maxn],f[maxn],vis[maxn],degree[maxn],head[maxn],tot; void added…
Give you a string with length N, you can generate N strings by left shifts. For example let consider the string “SKYLONG”, we can generate seven strings: String Rank SKYLONG 1 KYLONGS 2 YLONGSK 3 LONGSKY 4 ONGSKYL 5 NGSKYLO 6 GSKYLON 7 and lexicograp…
倍增法模板题 #include<iostream> #include<cstring> #include<cstdio> #include<queue> using namespace std; #define maxn 1000 #define DEG 20 struct Edge{ int to,next; }edge[maxn*maxn*]; int head[maxn],tot; void addedge(int u,int v){ edge[tot…
前言 矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中,矩阵的运算是数值分析领域的重要问题. 基本介绍 (该部分为入门向,非入门选手可以跳过) 由 m行n列元素排列成的矩形阵列.矩阵里的元素可以是数字.符号或数学式. 比如一个$m\times n$的矩阵可以表示为: $$ A=\begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\…
矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+Ak/2+A(k/2)*(A+A2+...+Ak/2)    k为偶数时: sum=A+A2+...+A(k-1)/2+A((k-1)/2)*(A+A2+...+A(k-1)/2)+Ak    k为奇数时. 然后递归二分求和 PS:刚开始mat定义的是__int64,于是贡献了n次TLE... #i…
题目链接:M斐波那契数列 题意:$F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]$.给定$a,b,n$,求$F[n]$. 题解:暴力打表后发现$ F[n]=a^{fib(n-1)} * b^{fib(n)} $ 斐波那契数列可用矩阵快速幂求解.但是此题中n较大,fib会爆掉.这时候需要引入费马小定理优化. 证明:$a^x \% p = a^{x \%(p-1)} \%p$ 1. $a^x \% p = a^{x \% (p-1) + x/(p-1)*(p-1)} \% p$ 2…
洛谷P3390 题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k 共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7 输入输出样例 输入样例#1: 2 1 1 1 1 1 输出样例#1: 1 1 1 1 说明 n<=100, k<=10^12, |矩阵元素|<=1000 算法:矩阵快速幂 矩阵快速幂模板:…
这是一个神奇的课题,其实我觉得用一个词来形容这个算法挺合适的:暴力. 是啊,就是循环+暴力.没什么难的... 先来看一道裸题. 那么对于这道题,显然我们的暴力算法就是枚举区间的左右端点,然后通过前缀和统计结果.时间复杂度O(n^2),但是如果我们的数据范围到了100000,那么我们的算法就T了. 于是我们考虑一个性质.如果我们发现一个区间,这个区间的sum<k,那么被这个区间包含的区间都不可能是答案. 所以我们用两个指针(左右端点.)如果目前区间的sum<k,我们就延伸右端点.否则我们就统计答…
时间限制 3000 ms 内存限制 32768 KB 代码长度限制 100 KB 题目描述 NowCoder最近在研究一个数列: * F(0) = 7 * F(1) = 11 * F(n) = F(n-1) + F(n-2) (n≥2) 他称之为NowCoder数列.请你帮忙确认一下数列中第n个数是否是3的倍数. 输入描述: 输入包含多组数据. 每组数据包含一个整数n,(0≤n≤1000000). 输出描述: 对应每一组输入有一行输出. 如果F(n)是3的倍数,则输出"Yes":否则输…
目录 快速幂 实数快速幂 矩阵快速幂 快速幂 实数快速幂 普通求幂的方法为 O(n) .在一些要求比较严格的题目上很有可能会超时.所以下面来介绍一下快速幂. 快速幂的思想其实是将数分解,即a^b可以分解为(a^2)*(a^2)...a:然后再分别算a^2:这样的计算量由O(n)一下变成 \(O(logn)\): 模板代码如下: ll pow(int a,int b) { if(b==0) return 1; ll res=1 % mod; while(b) { if(b&1) res=res*a…
正解:矩阵快速幂/tarjan+倍增 解题报告: 传送门! 跟着神仙做神仙题系列III 这题首先一看到就会想到快速幂趴?就会jio得,哦也不是很难哦 然而,看下数据范围,,,1×105,,,显然开不下TT 所以考虑优化快速幂(或找环+倍增 两种方法都港下趴 先说图论好辣QwQ 大概是这样的: 首先我们把每个座位都抽象成一个点,由它给我的A[]可以知道坐在每个座位上的人会移到哪儿 我们就可以理解为连了一条边 显然的是我们可以换了很多次之后换回来,于是就成了一个环了 然后我们就求一波强连通分量,这样…
第一道矩阵快速幂的题:模板题: #include<stack> #include<queue> #include<cmath> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; #define INF 0x3f3f3f3f typedef long long ll; ; int n;…
典型的两道矩阵快速幂求斐波那契数列 POJ 那是 默认a=0,b=1 UVA 一般情况是 斐波那契f(n)=(n-1)次幂情况下的(ans.m[0][0] * b + ans.m[0][1] * a): //POJ #include <cstdio> #include <iostream> using namespace std; ; struct matrix { ][]; }ans, base; matrix multi(matrix a, matrix b) { matrix…
UVA 11551 - Experienced Endeavour 题目链接 题意:给定一列数,每一个数相应一个变换.变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少 思路:矩阵高速幂,要加的位置值为1.其余位置为0构造出矩阵,进行高速幂就可以 代码: #include <cstdio> #include <cstring> const int N = 55; int t, n, r, a[N]; struct mat { int v[N][N]; mat() {mem…