936 ModricWang的导弹防御系统 思路 题意即为:给出一个长度为n的序列,求出其最长不降子序列. 考虑比较平凡的DP做法: 令\(nums[i]\) 表示这个序列,\(f[x]\) 表示以第\(x\)个数为结尾的最长的不降子序列的长度,状态转移方程为: \[ f[i]=(\max{f[j]}+1) \;\;\;\;\;\;\; \mbox{when $nums[i]<=nums[j]$}\\ \] f中的最大值即为答案. 时间复杂度\(O(n^2)\),空间复杂度\(O(n)\) 当然…
1066 ModricWang的水系法术 思路 比较典型的最大流问题,需要注意的是,题目已经暗示(明示)了这里的边是双向的,在建图的时候需要加上反向边的容量值. 解决最大流问题的基本思路就是不断在残量网络上找增广路径,这里可以参考一下我院远古学长Song Renfei对于ISAP算法的讲解:ISAP 时间复杂度\(O(V^2 \sqrt E)\) 代码 #include <iostream> #include <cstring> using std::ios_base; using…
930 ModricWang's Polygons 思路 首先要想明白,哪些多边形可能是格点正多边形? 分情况考虑: 三角形不可能,因为边长为有理数的正三角形的面积为无理数,而格点三角形的面积为有理数,二者矛盾. 正四边形毫无疑问是可以的. 边数>4时,可以考虑无穷递降法: 以六边形为例,假如整点正六边形存在,一定有边长最小的一个,记作\(A_1 A_2 A_3 A_4 A_5 A_6\).以\(A_2\)为中心,将\(A_1\)逆时针旋转90度,得到\(B_1\).显然也是整点.类似定义\(B…
904 Winter is coming 思路 难题.首先简化问题, \(n\) 个0与 \(m\) 个1排成一列,连续的0不能超过x个,连续的1不能超过y个,求排列方法数. 显然会想到这是动态规划.最快想到的方法是 \(dp[i][j][x][y]\) 表示已经有i个北境兵j个野人参与排列,且末尾有x个连续北境士兵或y个连续野人士兵的方案数.这方法显然是正确的,但是光是 \(dp[200][200][10][10]\) 数组已经十分接近本题内存限制了,保证MLE.状态转移方法是大模拟,四层fo…
940 AlvinZH的最"长"公共子序列 思路 DP,难题. \(dp[i][j]\) :记录A的前i个字符与B的前j个字符变成相同需要的最小操作数. 初始化:dp[i][0] = i, dp[0][i] = i.分别代表i次删除or添加操作. 三种操作得到dp[i][j],取其中最小值: 替换:可能不需要替换,所以是dp[i-1][j-1]+Same(A[i-1],B[j-1]): 删除:dp[i-1][j]+1: 添加:dp[i][j-1]+1. 千万不要纠结操作的序列是A还是B…
905 AlvinZH的奇幻猜想--三次方 思路 中等题.题意简单,题目说得简单,把一个数分成多个立方数的和,问最小立方数个数. 脑子转得快的马上想到贪心,从最近的三次方数往下减,反正有1^3在最后撑着保证减完.不好意思这是错的,因为1,27,64,125...等立方数之间并不是倍数关系,不能构成贪心策略.举个反例:96=64+8+8+8+8=64+27+1+1+1+1+1,答案明显是5,而贪心会算到7. 既然不是贪心,那就是DP了,没毛病.先讲一下常规做法吧,是这样想的:相当于把一个数化成几份…
1082 AlvinZH的学霸养成记VI 思路 难题,凸包. 分析问题,平面上给出两类点,问能否用一条直线将二者分离. 首先应该联想到这是一个凸包问题,分别计算两类点的凸包,如果存在符合题意的直线,那么这两个凸包(凸多边形)一定是不相交的. 计算凸包一般有两种方法,Graham扫描法和Jarvis步进法. Graham扫描法比较简单,好理解,书中也有伪代码.先找到最左下点P0,对剩下的点相对P0进行极角排序.然后依次进栈判断.当算法终止时,栈中从底部到顶部,依次是按逆时针方向排列的凸包中的点(有…
B Bamboo和巧克力工厂 分析 三条流水线的问题,依然是动态规划,但是涉及的切换种类比较多.比较易于拓展到n条流水线的方式是三层循环,外层是第k个机器手,里面两层代表可切换的流水线 核心dp语句:cost[i][k] = min(cost[i][k], cost[j][k-1]+t[j][i]+p[i][k]) 也可以在A题的基础上详细的列出所有可能的路线切割情况然后找到最小值. 注意本题与A题中t的含义不同. 上机时给出的伪代码 //数组从0开始 const int maxx= 510;…
915 双十一的抉择 思路 中等题.简化题目:一共n个数,分成两组,使得两组的差最接近0,就是说要使两组数都尽可能的接近sum/2. 思路还是很混乱的,不知道如何下手,暴力也挺难的,还不能保证对.想一想,从一堆数中取出一些使得和尽可能接近sum/2,把sum/2当作背包总体积,每个数字当作每件物品的体积,价值都是为1,求的就是最大价值.完完全全的01背包问题,问题解决,具体可见参考代码. 这里就不再详细讲解01背包了,请仔细研读<背包九讲>,务必学习到经典DP问题之背包问题的精髓. 分析 01…
A Bamboo的小吃街 分析 经典的两条流水线问题,题目描述基本类似于课件中的流水线调度,符合动态规划最优子结构性质 关键的动态规划式子为: dp[0][j] = min(dp[0][j - 1], dp[1][j - 1] + t[1][j - 1]) + p[0][j] //保存在左边第j个店铺时已经用的时间 dp[1][j] = min(dp[1][j - 1], dp[0][j - 1] + t[0][j - 1]) + p[1][j] //保存在右边第j个店铺时已经用的时间 即到达i…