spark mongo 性能优化】的更多相关文章

性能优化事项 http://www.mongoing.com/wp-content/uploads/2016/08/MDBSH2016/TJ_MongoDB+Spark.pdf MongoDB + Spark: 完整的大数据解决方案 | MongoDB中文社区 http://www.mongoing.com/tj/mongodb_shanghai_spark 性能优化事项 使用合适的chunksize (MB)Total data size / chunksize = chunks = RDD…
1.写在前面 Spark是专为大规模数据处理而设计的快速通用的计算引擎,在计算能力上优于MapReduce,被誉为第二代大数据计算框架引擎.Spark采用的是内存计算方式.Spark的四大核心是Spark RDD(Spark core),SparkSQL,Spark Streaming,Spark ML.而SparkSQL在基于Hive数仓数据的分布式计算上尤为广泛.本编博客主要介绍基于Java API的SparkSQL的一些用法建议和利用Spark处理各种大数据计算的性能优化建议 2.Spar…
性能调优相关的原理讲解.经验总结: 掌握一整套Spark企业级性能调优解决方案:而不只是简单的一些性能调优技巧. 针对写好的spark作业,实施一整套数据倾斜解决方案:实际经验中积累的数据倾斜现象的表现,以及处理后的效果总结. 调优前首先要对spark的作业流程清楚: Driver到Executor的结构: Master: Driver |-- Worker: Executor |-- job |-- stage |-- Task Task 一个Stage内,最终的RDD有多少个partitio…
Spark有几种部署的模式,单机版.集群版等等,平时单机版在数据量不大的时候可以跟传统的java程序一样进行断电调试.但是在集群上调试就比较麻烦了...远程断点不太方便,只能通过Log的形式,进行分析,利用spark ui做性能调整和优化. 那么本篇就介绍下如何利用Ui做性能分析,因为本人的经验也不是很丰富,所以只能作为一个入门的介绍. Spark UI入口 如果是单机版本,在单机调试的时候输出信息中已经提示了UI的入口: 17/02/26 13:55:48 INFO SparkEnv: Reg…
摘要: 本文将介绍 CBO,它充分考虑了数据本身的特点(如大小.分布)以及操作算子的特点(中间结果集的分布及大小)及代价,从而更好的选择执行代价最小的物理执行计划,即 SparkPlan. Spark CBO 背景 上文Spark SQL 内部原理中介绍的 Optimizer 属于 RBO,实现简单有效.它属于 LogicalPlan 的优化,所有优化均基于 LogicalPlan 本身的特点,未考虑数据本身的特点,也未考虑算子本身的代价. 本文将介绍 CBO,它充分考虑了数据本身的特点(如大小…
1.为什么引入Backpressure 默认情况下,Spark Streaming通过Receiver以生产者生产数据的速率接收数据,计算过程中会出现batch processing time > batch interval的情况,其中batch processing time 为实际计算一个批次花费时间, batch interval为Streaming应用设置的批处理间隔.这意味着Spark Streaming的数据接收速率高于Spark从队列中移除数据的速率,也就是数据处理能力低,在设置…
一:数据峰值的巨大影响 1. 数据确实不稳定,比如晚上的时候訪问流量特别大 2. 在处理的时候比如GC的时候耽误时间会产生delay延迟 二:Backpressure:数据的反压机制 基本思想:依据上一次计算的Job的一些信息评估来决定下一个Job数据接收的速度. 怎样限制Spark接收数据的速度? Spark Streaming在接收数据的时候必须把当前的数据接收完毕才干接收下一条数据. 源代码解析 RateController: 1. RateController是监听器.继承自Stream…
基本信息 作者: 高彦杰 丛书名:大数据技术丛书 出版社:机械工业出版社 ISBN:9787111483861 上架时间:2014-11-5 出版日期:2014 年11月 开本:16开 页码:255 版次:1-1 所属分类: 计算机 > 数据库 > 数据库存储与管理 编辑推荐 根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,已经BDAS生态系统的相关技术. 内容简介 书籍计算机书籍 这是一本依据最新技术版本,系统.全面.详细讲解Spark…
内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技术. 作为一个基于内存计算的大数据并行计算框架,Spark不仅很好地解决了数据的实时处理问题,而且保证了高容错性和高可伸缩性.具体来讲,它有如下优势: 打造全栈多计算范式的高效数据流水线 轻量级快速处理 易于使用,支持多语言 与HDFS等存储层兼容 社区活跃度高 -- Spark已经在全球范围内广泛使用,无论…
内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技术. 作为一个基于内存计算的大数据并行计算框架,Spark不仅很好地解决了数据的实时处理问题,而且保证了高容错性和高可伸缩性.具体来讲,它有如下优势: 打造全栈多计算范式的高效数据流水线 轻量级快速处理 易于使用,支持多语言 与HDFS等存储层兼容 社区活跃度高 -- Spark已经在全球范围内广泛使用,无论…
一.技术背景 Spark1.x版本中执行SQL语句,使用的是一种最经典,最流行的查询求职策略,该策略主要基于 Volcano Iterator Model(火山迭代模型).一个查询会包含多个Operator,每个Operator都会实现一个接口,提供一个next()方法,该方法返回Operator Tree的下一个Operator,能够让查询引擎组装任意Operator,而不需要去考虑每个Operator具体的处理逻辑,所以Volcano Iterator Model 才成为了20年中SQL执行…
Spark的性能分析和调优很有意思,今天再写一篇.主要话题是shuffle,当然也牵涉一些其他代码上的小把戏. 以前写过一篇文章,比较了几种不同场景的性能优化,包括portal的性能优化,web service的性能优化,还有Spark job的性能优化.Spark的性能优化有一些特殊的地方,比如实时性一般不在考虑范围之内,通常我们用Spark来处理的数据,都是要求异步得到结果的数据:再比如数据量一般都很大,要不然也没有必要在集群上操纵这么一个大家伙,等等.事实上,我们都知道没有银弹,但是每一种…
前言 数据倾斜调优 调优概述 数据倾斜发生时的现象 数据倾斜发生的原理 如何定位导致数据倾斜的代码 查看导致数据倾斜的key的数据分布情况 数据倾斜的解决方案 解决方案一:使用Hive ETL预处理数据 解决方案二:过滤少数导致倾斜的key 解决方案三:提高shuffle操作的并行度 解决方案四:两阶段聚合(局部聚合+全局聚合) 解决方案五:将reduce join转为map join 解决方案六:采样倾斜key并分拆join操作 解决方案七:使用随机前缀和扩容RDD进行join 解决方案八:多…
转自:http://tech.meituan.com/spark-tuning-basic.html?from=timeline 前言 开发调优 调优概述 原则一:避免创建重复的RDD 原则二:尽可能复用同一个RDD 原则三:对多次使用的RDD进行持久化 原则四:尽量避免使用shuffle类算子 原则五:使用map-side预聚合的shuffle操作 原则六:使用高性能的算子 原则七:广播大变量 原则八:使用Kryo优化序列化性能 原则九:优化数据结构 资源调优 调优概述 Spark作业基本运行…
http://mp.weixin.qq.com/s?__biz=MjM5NjQ5MTI5OA==&mid=2651745207&idx=1&sn=3d70d59cede236eb1cb4f7374387a235&scene=0#rd [技术博客]Spark性能优化指南——高级篇 2016-05-13 李雪蕤 美团技术团队 前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调…
http://mp.weixin.qq.com/s?__biz=MjM5NDMwNjMzNA==&mid=2651805828&idx=1&sn=2f413828d1fdc6a64bdbb25c51508dfc&scene=2&srcid=0519iChOETxAx0OeGoHnm7Xk&from=timeline&isappinstalled=0#rd Spark性能优化指南——基础篇 2016-05-18 优才网 前言 在大数据计算领域,Spar…
Spark Tungsten揭秘 Day1 jvm下的性能优化 今天开始谈下Tungsten,首先我们需要了解下其背后是符合了什么样的规律. jvm对分布式天生支持 整个Spark分布式系统是建立在分布式jvm基础上的,jvm非常伟大的一点在于把不同机器的计算能力联合起来了,jvm也把不同机器的存储能力连接起来了. jvm是怎么做到这一点的,jvm本身就是一个软件,有自己的通讯方式以及自己的一套协议,在进行java或者scala开发的时候,就支持了一个最重要的设计模式:代理模式,基于代理模式可以…
  在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常.总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行.因此我们必须对Spark作业的资…
在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常.总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行.因此我们必须对Spark作业的资源使…
1. 避免重复加载RDD 比如一份从HDFS中加载的数据 val rdd1 = sc.textFile("hdfs://url:port/test.txt"),这个test.txt只应该在你的程序中被加载一次,避免多次加载造成的性能开销. 2. 重复使用的RDD需要被缓存 Spark有数据持久化的几种策略,可以将RDD中的数据保存到内存或者磁盘中,后续对这个RDD的操作不会根据RDD lineage重新计算,而是直接从缓存中提取. 如果要对一个RDD进行持久化,只需要对这个RDD调用c…
1.Spark优化 1) 使用foreachPartitions替代foreach. 原理类似于“使用mapPartitions替代map”,也是一次函数调用处理一个partition的所有数据,而不是一次函数调用处理一条数据.在实践中发现,foreachPartitions类的算子,对性能的提升还是很有帮助的.比如在foreach函数中,将RDD中所有数据写MySQL,那么如果是普通的foreach算子,就会一条数据一条数据地写,每次函数调用可能就会创建一个数据库连接,此时就势必会频繁地创建和…
前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题. 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能. 数据倾斜发生时的现象 绝大多数task执行得都非常快,但个别task执行极慢.比如…
前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更快.性能更高. 然而,通过Spark开发出高性能的大数据计算作业,并不是那么简单的.如果没有对Spar…
转自https://tech.meituan.com/spark-tuning-pro.html,感谢原作者的贡献 前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题. 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问…
本文转自:http://tech.meituan.com/spark-tuning-basic.html 感谢原作者 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算…
本文转载自:https://tech.meituan.com/spark-tuning-pro.html 美团技术点评团队) Spark性能优化指南——高级篇 李雪蕤 ·2016-05-12 14:47 前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题. 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spa…
Task优化:    1.慢任务的性能优化:可以考虑减少每个Partition处理的数据量,同时建议开启spark.speculation(慢任务推导,当检测的慢任务时,会同步开启相同的新任务,谁先完成就认定该任务完成). 2.尽量减少Shuffle,例如我们要尽量减少groupByKey的操作,因为groupByKey会要求通过网络拷贝(Shuffle)所有的数据,优先考虑使用reduceByKey.因为reduceByKey会首先reduce locally.例如在进行join操作的时候,形…
Spark性能优化的10大问题及其解决方案 问题1:reduce task数目不合适解决方式:需根据实际情况调节默认配置,调整方式是修改参数spark.default.parallelism.通常,reduce数目设置为core数目的2到3倍.数量太大,造成很多小任务,增加启动任务的开销:数目太少,任务运行缓慢. 问题2:shuffle磁盘IO时间长解决方式:设置spark.local.dir为多个磁盘,并设置磁盘为IO速度快的磁盘,通过增加IO来优化shuffle性能: 问题3:map|red…
开发调优篇 原则一:避免创建重复的RDD 通常来说,我们在开发一个Spark作业时,首先是基于某个数据源(比如Hive表或HDFS文件)创建一个初始的RDD:接着对这个RDD执行某个算子操作,然后得到下一个RDD:以此类推,循环往复,直到计算出最终我们需要的结果.在这个过程中,多个RDD会通过不同的算子操作(比如map.reduce等)串起来,这个“RDD串”,就是RDD lineage,也就是“RDD的血缘关系链”. 我们在开发过程中要注意:对于同一份数据,只应该创建一个RDD,不能创建多个R…
资源调优 调优概述 在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常.总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行.因此我们必须对S…