torch.cat()和torch.stack()】的更多相关文章

torch.cat() 和 torch.stack()略有不同torch.cat(tensors,dim=0,out=None)→ Tensortorch.cat()对tensors沿指定维度拼接,但返回的Tensor的维数不会变,可理解为续接:torch.stack(tensors,dim=0,out=None)→ Tensortorch.stack()同样是对tensors沿指定维度拼接,但返回的Tensor会多一维,可理解为叠加:----------------版权声明:本文为CSDN博主…
torch.stack():http://www.45fan.com/article.php?aid=1D8JGDik5G49DE1X torch.stack()个人理解:属于先变形再cat的操作,所以在哪个维度上stack,要先把原数据变成相应维度上的值. 例如:x = [1, 2], y = [3, 4], torch.stack([x, y], dim=1) x要先变成2*1的形状,即[[1], [2]], y也一样,[[3], [4]],然后再在第一个维度上叠加,变成[[1, 3], […
torch.cat拼接 stack拼接 分块chunk 待办 https://blog.csdn.net/qq_39709535/article/details/80803003 stack dim理解 https://blog.csdn.net/Teeyohuang/article/details/80362756 tensor分块 https://www.jianshu.com/p/43c16ed2483c chunk pytorch 基础运算 https://www.cnblogs.com…
cat是concatnate的意思:拼接,联系在一起. 先说cat( )的普通用法 如果我们有两个tensor是A和B,想把他们拼接在一起,需要如下操作: C = torch.cat( (A,B),0 ) #按维数0拼接(竖着拼) C = torch.cat( (A,B),1 ) #按维数1拼接(横着拼) >>> import torch >>> A=torch.ones(2,3) #2x3的张量(矩阵) >>> A tensor([[ 1., 1.,…
import torch 通过 help((torch.cat)) 可以查看 cat 的用法 cat(seq,dim,out=None) 其中 seq表示要连接的两个序列,以元组的形式给出,例如:seq=(a,b), a,b 为两个可以连接的序列 dim 表示以哪个维度连接,dim=0, 横向连接 dim=1,纵向连接 #实例: #dim=0 时: import torch n_data = torch.ones((100,2)) x0_data = torch.normal(2*n_data,…
从 relu 的多种实现来看 torch.nn 与 torch.nn.functional 的区别与联系 relu多种实现之间的关系 relu 函数在 pytorch 中总共有 3 次出现: torch.nn.ReLU() torch.nn.functional.relu_() torch.nn.functional.relu_() torch.relu() torch.relu_() 而这3种不同的实现其实是有固定的包装关系,由上至下是由表及里的过程. 其中最后一个实际上并不被 pytorch…
发现 对于torch.matmul和torch.bmm,都能实现对于batch的矩阵乘法: a = torch.rand((2,3,10))b = torch.rand((2,2,10))### matmal()res1 = torch.matmul(a,b.transpose(1,2))print res1 """...[torch.FloatTensor of size 2x3x2]"""### bmm()res2 = torch.bmm(a…
1. torch.nn与torch.nn.functional之间的区别和联系 https://blog.csdn.net/GZHermit/article/details/78730856 nn和nn.functional之间的差别如下,我们以conv2d的定义为例 torch.nn.Conv2d import torch.nn.functional as F class Conv2d(_ConvNd): def __init__(self, in_channels, out_channels…
在写代码时发现我们在定义Model时,有两种定义方法: torch.nn.Conv2d()和torch.nn.functional.conv2d() 那么这两种方法到底有什么区别呢,我们通过下述代码看出差别,先拿torch.nn.Conv2d torch.nn.Conv2d class Conv2d(_ConvNd): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=…
torch.rand(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) #返回从[0,1)均匀分布中抽取的一组随机数:均匀分布采样:#*sizes指定张量的形状: torch.randn(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) #返回从标…
PyTorch - torch.eq.torch.ne.torch.gt.torch.lt.torch.ge.torch.le 参考:https://flyfish.blog.csdn.net/article/details/106388548…
定义 torch.sort(input,dim,descending) torch.argsort(input,dim,descending) 用法 torch.sort:对输入数据排序,返回两个值,即排序后的数据values和其在原矩阵中的坐标indices torch.argsort:同torch.sort()返回的indices 参数 input:输入矩阵 dim:排序维度,默认为dim=1,即对行排序 descending:排序方式(从小到大和从大到小),默认为从小到大排序(即desce…
squeeze的用法主要就是对数据的维度进行压缩或者解压. 先看torch.squeeze() 这个函数主要对数据的维度进行压缩,去掉维数为1的的维度,比如是一行或者一列这种,一个一行三列(1,3)的数去掉第一个维数为一的维度之后就变成(3)行.squeeze(a)就是将a中所有为1的维度删掉.不为1的维度没有影响.a.squeeze(N) 就是去掉a中指定的维数为一的维度.还有一种形式就是b=torch.squeeze(a,N) a中去掉指定的定的维数为一的维度. 再看torch.unsque…
squeeze的用法主要就是对数据的维度进行压缩或者解压. squeeze() torch.squeeze(a):去掉a中维数为1的维度. a.squeeze(N):去掉特定维度N下维数为1的维度. b=torch.squeeze(a,N):a中去掉指定的维数为1的维度. unsqueeze() a.unsqueeze(N):在a中指定位置N加上一个维数为1的维度. b=torch.unsqueeze(a,N):在a中指定位置N加上一个维数为1的维度.…
学习pytorch路程之动手学深度学习-3.4-3.7 置信度.置信区间参考:https://cloud.tencent.com/developer/news/452418 本人感觉还是挺好理解的 交叉熵参考博客:https://www.cnblogs.com/kyrieng/p/8694705.html   https://blog.csdn.net/tsyccnh/article/details/79163834  个人感觉还不错,好理解 (这段瞅瞅就行了)torchvision包,服务于P…
形式: torch.max(input) → Tensor 返回输入tensor中所有元素的最大值: a = torch.randn(1, 3) >>0.4729 -0.2266 -0.2085 torch.max(a) #也可以写成a.max() >>0.4729 形式: torch.max(input, dim, keepdim=False, out=None) -> (Tensor, LongTensor) 按维度dim 返回最大值,并且返回索引. torch.max(…
PyTorch常用代码段整理合集 本文代码基于 PyTorch 1.0 版本,需要用到以下包 import collections import os import shutil import tqdm import numpy as np import PIL.Image import torch import torchvision 基础配置 检查 PyTorch 版本 torch.__version__ # PyTorch version torch.version.cuda # Corr…
PyTorch常用代码段整理合集 转自:知乎 作者:张皓 众所周知,程序猿在写代码时通常会在网上搜索大量资料,其中大部分是代码段.然而,这项工作常常令人心累身疲,耗费大量时间.所以,今天小编转载了知乎上的一篇文章,介绍了一些常用PyTorch代码段,希望能够为奋战在电脑桌前的众多程序猿们提供帮助! 本文代码基于 PyTorch 1.0 版本,需要用到以下包 import collectionsimport osimport shutilimport tqdm import numpy as np…
Transformer注解及PyTorch实现 原文:http://nlp.seas.harvard.edu/2018/04/03/attention.html 作者:Alexander Rush 转载自机器之心:https://www.jiqizhixin.com/articles/2018-11-06-10?from=synced&keyword=transformer 在学习的过程中,将代码及排版整理了一下,方便阅读. "Attention is All You Need"…
实现细节; 1.embedding 层 2.positional encoding层:添加位置信息 3,MultiHeadAttention层:encoder的self attention 4,sublayerConnection层:add&norm,使用layerNorm, 5,FeedForward层:两层全连接 6,Masked MultiHeadAttention:decoder中的self attention层,添加mask,不考虑计算当前位置的后面信息 7,MultiHeadAtte…
基础配置 检查 PyTorch 版本 torch.__version__               # PyTorch version torch.version.cuda              # Corresponding CUDA version torch.backends.cudnn.version()  # Corresponding cuDNN version torch.cuda.get_device_name(0)   # GPU type 更新 PyTorch PyTo…
一.组织张量的元素 (1)重排张量元素 本节介绍在不改变 张量元素个数 和 各元素的值的情况下改变张量的大小 torch.Tensor类的成员方法 reshape() 参数是多个int类型的值. 如果想要把一个张量的大小改成 s[0],s[1],s[2],s[3]....那就让s[0],s[1],s[2],s[3]....作为reshape() 方法的n个参数 使用 reshape()  在不改变元素个数和各元素的值的情况下改变张量大小 tc = torch.arange(12) #张量大小 (…
From: https://liudongdong1.github.io/ 0. 基础配置 0.1. 设置随机种子 def set_seeds(seed, cuda): """ Set Numpy and PyTorch seeds. """ np.random.seed(seed) torch.manual_seed(seed) if cuda: torch.cuda.manual_seed_all(seed) print ("==&…
Pytorch之Spatial-Shift-Operation的5种实现策略 本文已授权极市平台, 并首发于极市平台公众号. 未经允许不得二次转载. 原始文档(可能会进一步更新): https://www.yuque.com/lart/ugkv9f/nnor5p 前言 之前看了一些使用空间偏移操作来替代区域卷积运算的论文: 粗看: https://www.yuque.com/lart/architecture/conv#uKY5N (CVPR 2018) [Grouped Shift] Shif…
过拟合.欠拟合及其解决方案 过拟合.欠拟合的概念 权重衰减 丢弃法   模型选择.过拟合和欠拟合 训练误差和泛化误差 在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error).通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似.计算训练误差和泛化误差可以使用之前介绍过的损失函数,例如线性回归用到的平方损失函数和softmax回归用到的交叉熵损…
过拟合.欠拟合及其解决方案 过拟合.欠拟合的概念 权重衰减 丢弃法 模型选择.过拟合和欠拟合 训练误差和泛化误差 在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error).通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似.计算训练误差和泛化误差可以使用之前介绍过的损失函数,例如线性回归用到的平方损失函数和softmax回归用到的交叉熵损失函…
1.涉及语句 import d2lzh1981 as d2l 数据1 : d2lzh1981 链接:https://pan.baidu.com/s/1LyaZ84Q4M75GLOO-ZPvPoA 提取码:cf8s 2.FashionMNIST2065数据集 涉及语句 batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size,root='/home/kesci/input/FashionMNIST…
考虑一个函数$y=f(\textbf{x}) (R^n\rightarrow R)$,y的Hessian矩阵定义如下: 考虑一个函数:$$f(x)=b^Tx+\frac{1}{2}x^{T}Ax\\其中b^T=[1,3,5], A在代码中可读,可以自定义$$ 求该函数在x = [0,0,0]处海森矩阵值的python代码如下: 本代码需要用到torch.autograd包中的核心函数torch.autograd.grad.相邻随笔中有详细参考解析.大致原理是人工求导并保留了计算图,所以求二阶导很…
考虑一个向量值函数$R^m \rightarrow R^n$,即$\textbf{y} = f(\textbf{x})$,它的雅各比(Jacobian)矩阵定义如下. 下面记录下一段使用python求向量值函数Jacobian矩阵的代码,只有向量值函数可用,如果为标量函数则会报错. import torch # 定义函数 x = torch.tensor([1, 3, 5.], requires_grad=True) A = torch.tensor([[1., 0, 1], [0, 1, 0]…
torch 包 torch 包含了多维张量的数据结构以及基于其上的多种数学操作.另外,它也提供了多种工具,其中一些可以更有效地对张量和任意类型进行序列化. 它有CUDA 的对应实现,可以在NVIDIA GPU上进行张量运算(计算能力>=2.0). http://www.aibbt.com/a/pytorch/ 张量 Tensors torch.is_tensor[source] torch.is_tensor(obj) 如果obj 是一个pytorch张量,则返回True 参数: obj (Ob…