Spark操作算子本质-RDD的容错】的更多相关文章

Spark操作算子本质-RDD的容错spark模式1.standalone master 资源调度 worker2.yarn resourcemanager 资源调度 nodemanager在一个集群中只能有一个资源调度,如果有两个资源调度的话,master和resourcemanager之间是不通信的,master分配某个资源,resourcemanager是不知道的一个application对应一个driver,driver是用来分配任务的 流程示意分布式文件系统(File system)加…
Spark的算子的分类 从大方向来说,Spark 算子大致可以分为以下两类: 1)Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理. Transformation 操作是延迟计算的,也就是说从一个RDD 转换生成另一个 RDD 的转换操作不是马上执行,需要等到有 Action 操作的时候才会真正触发运算. 2)Action 行动算子:这类算子会触发 SparkContext 提交 Job 作业.   Action 算子会触发 Spark 提交作业(Jo…
转载自:http://blog.csdn.net/liuwenbo0920/article/details/45243775 1. Spark中的基本概念 在Spark中,有下面的基本概念.Application:基于Spark的用户程序,包含了一个driver program和集群中多个executorDriver Program:运行Application的main()函数并创建SparkContext.通常SparkContext代表driver programExecutor:为某App…
RDD算子调优 不废话,直接进入正题! 1. RDD复用 在对RDD进行算子时,要避免相同的算子和计算逻辑之下对RDD进行重复的计算,如下图所示: 对上图中的RDD计算架构进行修改,得到如下图所示的优化结果: 2. 尽早filter 获取到初始RDD后,应该考虑尽早地过滤掉不需要的数据,进而减少对内存的占用,从而提升Spark作业的运行效率. 本文首发于公众号:五分钟学大数据,欢迎围观 3. 读取大量小文件-用wholeTextFiles 当我们将一个文本文件读取为 RDD 时,输入的每一行都会…
Spark的算子的作用 首先,关于spark算子的分类,详细见 http://www.cnblogs.com/zlslch/p/5723857.html 1.Transformation 变换/转换算子 1.map算子 2.flatMap算子 3.mapPartitions算子 4.union算子 5.cartesian算子 6.grouBy算子 7.filter算子 8.sample算子 9.cache算子 10.persist算子 11.mapValues算子 12.combineByKey…
RDD的容错机制 RDD实现了基于Lineage的容错机制.RDD的转换关系,构成了compute chain,可以把这个compute chain认为是RDD之间演化的Lineage.在部分计算结果丢失时,只需要根据这个Lineage重算即可. 图1中,假如RDD2所在的计算作业先计算的话,那么计算完成后RDD1的结果就会被缓存起来.缓存起来的结果会被后续的计算使用.图中的示意是说RDD1的Partition2缓存丢失.如果现在计算RDD3所在的作业,那么它所依赖的Partition0.1.3…
键值对的RDD操作与基本RDD操作一样,只是操作的元素由基本类型改为二元组. 概述 键值对RDD是Spark操作中最常用的RDD,它是很多程序的构成要素,因为他们提供了并行操作各个键或跨界点重新进行数据分组的操作接口. 创建 Spark中有许多中创建键值对RDD的方式,其中包括 读取时直接返回键值对RDD 普通RDD转换成键值对RDD 在Scala中,可通过Map函数生成二元组 val listRDD = sc.parallelize(List(1,2,3,4,5)) val result =…
一.RDD的概述 1.1 什么是RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 1.2 RDD的属性 (1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片都…
package com.test; import java.util.ArrayList; import java.util.List; import java.util.Map; import org.apache.spark.Partitioner; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD;…
预览 在高层次上,每一个Spark应用(application)都包含一个驱动程序(driver program),该程序运行用户的主函数(main function),并在集群上执行各种并行操作. Spark提供的主要抽象是一个弹性分布式数据集(resilient distributed dataset,简称RDD),它是在集群节点间进行分区的元素集合,可以并行操作.RDD是通过Hadoop文件系统中的文件创建或者由驱动程序中现有的集合转换得到的,用户可以要求Spark将RDD持久化到内存中,…