建模算法(八)——插值】的更多相关文章

插值:求过已知有限个数据点的近似函数 拟合:已知有限个数据点,求近似函数,不要求过已知数据点,只要求在某种意义下在这些点的误差最小 (一)插值方法 一.拉格朗日多项式插值 1.插值多项式 就是做出一个多项式函数,经过给出的n个节点,并尽可能的接近原函数,将点带入多项式函数得到一个线性方程组 当系数矩阵满秩时,有唯一解.而,系数矩阵的行列式为 这是一个范德蒙德行列式,只要各个节点不同时,行列式就不为0,因此可得,一定能够解出系数方程 还有些指标 2.拉格朗日插值多项式 3.MATLAB实现 fun…
前段时间人工智能的课介绍到A*算法,于是便去了解了一下,然后试着用这个算法去解决经典的八数码问题,一开始写用了挺久时间的,后来试着把算法的框架抽离出来,编写成一个通用的算法模板,这样子如果以后需要用到A*算法的话就可以利用这个模板进行快速开发了(对于刷OJ的题当然不适合,不过可以适用于平时写一些小游戏之类的东西). A*算法的原理就不过多介绍了,网上能找到一大堆,核心就是估价函数 g() 的定义,这个会直接影响搜索的速度,我在代码里使用 C++/Java 的多态性来编写业务无关的算法模板,用一个…
一.解决问题 主要是安排现有资源(一定),取得最好的效益的问题解决,而且约束条件都是线性的. 二.数学模型 1.一般数学模型 2.MATLAB数学模型 其中c,x都是列向量,A,Aeq是一个合适的矩阵,b,beq是合适的列向量.然后lb和ub是下限和上线(但是请注意= =,lb是一个变量的名字) 三.相关方程解法 1.图解法,画出可行域,这个可以进行编程进行实现. 2.直接使用MATLAB的相关方法进行解题. [x,fval]=linprog(c,A,b,Aeq,beq,LB,UB,Xo,OPT…
八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋格不能有其他皇后 解出能将八个皇后都放在棋盘中的摆法 这个问题通常使用两种方法来求解: 穷举法 回溯法(递归) 本文章通过回溯法来求解,回溯法对比穷举法高效许多,让我们学习如何实现吧! 实现思想: 我们先在棋盘的第0行第1个棋格放下第一个皇后 下一行寻找一个不冲突的棋格放下下一个皇后 循环第2步 如…
什么是八皇后问题: 指的是,在一个8 * 8的棋盘中, 放置8个棋子, 保证这8个棋子相互之间, 不在同一行,同一列,同一斜线, 共有多少种摆法? 游戏连接: http://www.4399.com/flash/42643.htm#search3 直接上代码: public class QueueLv8 { int maxSize =8; int[] array = new int[maxSize]; static int count = 0;//正解次数 static int okCount…
今天在阅读数学建模的时候看到了差分那章 其中有一个用matlab求线性的代码,这里我贴出来 这里我送上 Python代码 In [39]: import numpy as np ...: from scipy.optimize import nnls ...: x = np.array([[1,2,3,4,5],[1,1,1,1,1]]) ...: x = x.T ...: y = np.array([11,12,13,15,16]) ...: nnls(x,y) ...: Out[39]: (…
一.数据变换技术 为了保证建模的质量和系统分析结果的准确性,对原始的数据要进行去量纲处理. 1.定义 设有序列,则成映射为序列x到序列y的数据变换. (1) f 是初值化变换. (2) f 是均值化变换. (3) f 是百分比变换 (4) f 是倍数变换 (5) f 是归一化变换其中x0>0的一个数值 (6) f 是极差最大值变换 (6) f 是区间值变换 二.关联分析 1.定义 参考数列是被比较(主体),比较数列是比较值(不是主体) 但是由于各个时刻都有一个分辨系数,太过分散,所以再定义一个指…
(一)神经网络简介 主要是利用计算机的计算能力,对大量的样本进行拟合,最终得到一个我们想要的结果,结果通过0-1编码,这样就OK啦 (二)人工神经网络模型 一.基本单元的三个基本要素 1.一组连接(输入),上面含有连接强度(权值). 2.一个求和单元 3.一个非线性激活函数,起到将非线性映射作用,并将神经元输出幅度限制在一定范围内(在(0,1)或者(-1,1)) 4.还有一个阀值(偏置) 归结如下: PS:也可以选择将偏置(阀值)加入到线性求和里面 5.激活函数的选择 二.网络结构及工作方式 1…
(一)图与网络的基本概念 一.无向图 含有的元素为顶点,弧和权重,但是没有方向 二.有向图 含有的元素为顶点,弧和权重,弧具有方向. 三.有限图.无限图 顶点和边有限就是有限图,否则就是无限图. 四.简单图 既没有环,也没有两条边连接同一对顶点的图 五.完全图.二分图 每一对不同的顶点都有一条边相连的简单图称为完全图. 六.子图 就是被包含的图 七.顶点的度 就是顶点连接了几条边. 性质:1.全部顶点的度相加为偶数 2. 任意一个图的奇顶点的个数为偶数. (二)图与网络的数据结构 一.邻接矩阵表…
一.非线性规划和线性规划不同之处 1.含有非线性的目标函数或者约束条件 2.如果最优解存在,线性规划只能存在可行域的边界上找到(一般还是在顶点处),而非线性规划的最优解可能存在于可行域的任意一点达到. 二.非线性规划的Matlab解法 1.Matlab中非线性规划的数学模型为: 其中f(x)是标量函数,A,B,Aeq,Beq是相应维数的矩阵和向量,C(x),Ceq(X)是非线性向量函数. 然后我们通过一个例子来加深印象 MATLAB实现: function f=fun1(x) %定义目标函数 f…