机器学习中的范数规则化之(一)L0.L1与L2范数 博客的学习笔记,对一些要点进行摘录.规则化也有其他名称,比如统计学术中比较多的叫做增加惩罚项:还有现在比较多的正则化. -------------------------------------------- 一.正则化背景 监督机器学习问题无非就是"minimizeyour error while regularizing your parameters",也就是在规则化参数的同时最小化误差.最小化误差是为了让我们的模型拟合我们的训…
L0/L1/L2范数的联系与区别 标签(空格分隔): 机器学习 最近快被各大公司的笔试题淹没了,其中有一道题是从贝叶斯先验,优化等各个方面比较L0.L1.L2范数的联系与区别. L0范数 L0范数表示向量中非零元素的个数: \(||x||_{0} = \#(i)\ with\ \ x_{i} \neq 0\) 也就是如果我们使用L0范数,即希望w的大部分元素都是0. (w是稀疏的)所以可以用于ML中做稀疏编码,特征选择.通过最小化L0范数,来寻找最少最优的稀疏特征项.但不幸的是,L0范数的最优化…
目录: 一.L0,L1范数 二.L2范数 三.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则…
在机器学习的概念中,我们经常听到L0,L1,L2正则化,本文对这几种正则化做简单总结. 1.概念 L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数的平方的和的开方值. 2.先讨论几个问题: 1)实现参数的稀疏有什么好处吗? 一个好处是可以简化模型,避免过拟合.因为一个模型中真正重要的参数可能并不多,如果考虑所有的参数起作用,那么可以对训练数据可以预测的很好,但是对测试数据就只能呵呵了.另一个好处是参数变少可以使整个模型获得更好的可解释性. 2…
一.首先说一下范数的概念: 向量的范数可以简单形象的理解为向量的长度,或者向量到零点的距离,或者相应的两个点之间的距离. 向量的范数定义:向量的范数是一个函数||x||,满足非负性||x|| >= 0,齐次性||cx|| = |c| ||x|| ,三角不等式||x+y|| <= ||x|| + ||y||. 常用的向量的范数:L1范数:  ||x|| 为x向量各个元素绝对值之和.L2范数:  ||x||为x向量各个元素平方和的1/2次方,L2范数又称Euclidean范数或者Frobenius…
前言 L1.L2在机器学习方向有两种含义:一是L1范数.L2范数的损失函数,二是L1.L2正则化 L1范数.L2范数损失函数 L1范数损失函数: L2范数损失函数: L1.L2分别对应损失函数中的绝对值损失函数和平方损失函数 区别: 分析: robust: 与L2相比,L1受异常点影响比较小,因此稳健 stable: 如果仅一个点,L1就是一个直线,L2是二次,对于直线来说是多解,因此不稳定,而二次函数只有一个极小值点 L1.L2正则化 为什么出现正则化? 正则化的根本原因是 输入样本的丰度不够…
转自:https://blog.csdn.net/dang_boy/article/details/78504258 https://www.cnblogs.com/Belter/p/8536939.html https://www.cnblogs.com/Belter/p/8536939.html  (这个也写的很好,只不过还没看) 1.最小二乘法则 假设我们有n个样本数据,每个数据有p个特征值,然后p个特征值是线性关系. 即对应的线性模型 写成矩阵的形式即是Y=XA,误差B矩阵:即B=Y-X…
https://blog.csdn.net/zouxy09/article/details/24971995 原文转自csdn博客,写的非常好. L0: 非零的个数 L1: 参数绝对值的和 L2:参数平方和…
转载:http://blog.csdn.net/u012162613/article/details/44261657(请移步原文) 正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止o…
认识 L1, L2 从效果上来看, 正则化通过, 对ML的算法的任意修改, 达到减少泛化错误, 但不减少训练误差的方式的统称 训练误差 这个就损失函数什么的, 很好理解. 泛化错误 假设 我们知道 预测值 和 真实值 之前的 "误差" , 这就是泛化错误 跟训练数据没关系, 就是在用模型预测的时候, 给预测值 "加" 是一个项来修正模型 类似于 给 模型的预测值, 加上了一个 "修正项" 损失函数 = Loss + 正则化项 举个线性回归的栗子…