前面几篇博客主要说了光场相机,光场相机由于能够记录相机内部整个光场,可以实现重聚焦(模糊线索)和不同视角的变换(视差线索),同时也可以利用这个特性进行深度估计(Depth Estimation). 先说一下利用重聚焦得到的不同聚焦平面图像获取深度图(模糊线索 ,defocus),其实这个原理非常简单. 1. 以聚焦范围为0.2F-2F为例,alpha∈(0.2,2),取Depth Resolution=256, 那么步长就为(2-0.2)/256,我们通过重聚焦算法可以获取得到这个范围内的256…
光场相机由于能够捕获相机内部光线的强度和方向而得到整个光场,可以实现重聚焦(refocus)和视角变换等功能.进而可以进行深度估计获取深度图,前面说过利用重聚焦的图像进行深度估计,今天说一下利用不同视角的图像进行深度估计. 仍然是以Lytro Illum为例 由于每一个微透镜后面的15*15个像素能够记录来自主镜头的225条光线信息,因此取每一个微透镜后面同一位置的像素可以得到一个视角下的图像,遍历15*15个像素,就能够得到225个不同视角下的图像.这些图像之间视角上又偏移,即视差,可以使用匹…
Towards real-time unsupervised monocular depth estimation on CPU Matteo Poggi , Filippo Aleotti , Fabio Tosi , Stefano Mattoccia 在CPU上进行实时无监督单目深度估计 Abstract— Unsupervised depth estimation from a single image is a very attractive technique with severa…
Coding Tree Depth Estimation for Complexity Reduction of HEVC <HEVC标准介绍.HEVC帧间预测论文笔记>系列博客,目录见:http://www.cnblogs.com/DwyaneTalk/p/5711333.html 2013 Data Compress Conference   核心思想:         在P1.8论文(将frame分为Fu和Fc,对于Fc帧中CTU的最大深度进行限定,最大深度的值根据Fu帧对应位置的CTU…
Depth estimation/stereo matching/optical flow @CVPR 2017 Unsupervised Learning of Depth and Ego-Motion from Video https://people.eecs.berkeley.edu/%7Etinghuiz/projects/SfMLearner/ https://www.reddit.com/r/MachineLearning/comments/6u06y8/p_selfsupervi…
1.Luhn算法(模10算法) 通过查看ISO/IEC 7812-1:2017文件可以看到对于luhn算法的解释,如下图: 算法主要分为三步: 第一步:从右边第一位(最低位)开始隔位乘2: 第二步:把第一步所得的每一个数字加入到原来的数中,比如9*2=18,为1+8: 第三步:用以0结尾且大于第二步所获得的数的和的最小整数减去第二步所获得的合即可以获得校验位,如70-67=3,3即为校验位,如果第二步所有数字的和以0结尾,比如30.40.50等,那么校验为0: 2.IMEI校验 IMEI码由GS…
iDT算法是行为识别领域中非常经典的一种算法,在深度学习应用于该领域前也是效果最好的算法.由INRIA的IEAR实验室于2013年发表于ICCV.目前基于深度学习的行为识别算法效果已经超过了iDT算法,但与iDT的结果做ensemble总还是能获得一些提升.所以这几年好多论文的最优效果都是"Our method+iDT"的形式. 此前由于项目原因,对iDT算法进行了很多研究和实验,故此处对其核心思路与一些实施的细节进行总结,方便后续回顾,也希望能够在此过程中获得一些新的启发. 介绍的内…
转自:http://blog.csdn.net/carson2005/article/details/7647500 TLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生在其攻读博士学位期间提出的一种新的单目标长时间(long term tracking)跟踪算法.该算法与传统跟踪算法的显著区别在于将传统的跟踪算法和传统的检测算法相结合来解决被跟踪目标在被跟踪过程中发生的形变.部分遮挡等问题.同时,通过一种改进的在线学习机制不断更新跟踪模块的“显著特征…
主要内容: 动机 FM算法模型 FM算法VS 其他算法   一.动机 在传统的线性模型如LR中,每个特征都是独立的,如果需要考虑特征与特征直接的交互作用,可能需要人工对特征进行交叉组合:非线性SVM可以对特征进行kernel映射,但是在特征高度稀疏的情况下,并不能很好地进行学习:现在也有很多分解模型Factorization model如矩阵分解MF.SVD++等,这些模型可以学习到特征之间的交互隐藏关系,但基本上每个模型都只适用于特定的输入和场景.为此,在高度稀疏的数据场景下如推荐系统,FM(…
据 Drew 所知最短路经算法现在重要的应用有计算机网络路由算法,机器人探路,交通路线导航,人工智能,游戏设计等等.美国火星探测器核心的寻路算法就是采用的D*(D Star)算法. 最短路经计算分静态最短路计算和动态最短路计算. 静态路径最短路径算法是外界环境不变,计算最短路径.主要有Dijkstra算法,A*(A Star)算法. 动态路径最短路是外界环境不断发生变化,即不能计算预测的情况下计算最短路.如在游戏中敌人或障碍物不断移动的情况下.典型的有D*算法  Dijkstra算法求最短路径:…