POJ 2480 (约数+欧拉函数)】的更多相关文章

题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n不互质,那么只要枚举n的全部约数,对于一个约数d,若使gcd(i/d,n/d)互质,这部分的gcd和=d*欧拉函数phi(n/d). 不断暴力从小到大枚举约数,这样就把gcd和切成好多个部分,累加起来就行了. 其实还可以公式化简,不过实在太繁琐了.可以参考金海峰神的解释. 由于要求好多欧拉函数,每次…
点击打开链接 //求SUM(gcd(i,n), 1<=i<=n) /* g(n)=gcd(i,n),根据积性定义g(mn)=g(m)*g(n)(gcd(m,n)==1) 所以gcd(i,n)是积性的,所以f(n)=sum(gcd(i,n))是积性的, f(n)=f(p1^a1*p2^a2*...*pn^an)=f(p1^a1)*f(p2^a2)*..*f(pn^an) 求f(p1^a1)就可以了,设d为p1^a1的一个因子,gcd(i,n)的个数为phi(n/d) (gcd(i,n/d)==1…
Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14291   Accepted: 5647 Description The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b)…
约数 一.概念 约数,又称因数.整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a.a称为b的倍数,b称为a的约数. 二.性质 1.整数唯一分解 1)定义 对于任意一个正整数N,都有 N=p1c1*p2c2...pmcm,其中p为质数. 2)正约数集合 ={p1b1*p2b2*...pmbm|0<=bi<=ci}   3)正约数的和 f(n)=(p1^0+p1^1+p1^2+…p1^a1)(p2^0+p2^1+p2^2+…p2^a2)…(pk^0+pk…
题目链接 题意 : 求小于等于n中与n互质的数的个数. 思路 : 看数学的时候有一部分是将欧拉函数的,虽然我没怎么看懂,但是模板我记得了,所以直接套了一下模板. 这里是欧拉函数的简介. #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> using namespace std; int main() { int x…
题意:找到与n互质的第 k个数 开始一看n是1e6 敲了个暴力结果tle了,后来发现k达到了 1e8 所以需要用到欧拉函数. 我们设小于n的 ,与n互质的数为  (a1,a2,a3.......a(phi(n))) 那么显然,在区间  [ k*n , (k+1)*n ]内的互质数即为 k*n+(a1,a2,a3.......a(phi(n))) 所以只需要求出 (a1,a2,a3.......a(phi(n))) 就可以利用欧拉函数快速找到后面的数 代码如下: #include <iostrea…
版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article/details/35774889 最主要的欧拉函数: 欧拉函数:求小于n的与n互质的个数   欧兰函数公式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)-..(1-1/pn),当中p1, p2--pn为x的全部质因数   就是要求这种式子啦,只是求这条式子.相信有非…
枚举位移肯定超时,对于一个位移i.我们须要的是它的循环个数,也就是gcd(i,n),gcd(i,n)个数肯定不会非常多,由于等价于n的约数的个数. 所以我们枚举n的约数.对于一个约数k,也就是循环个数为n/k这种个数有phi[k]种,证明网上有非常多. 所以答案就是 phi[k]*(pow(n,n/k)) (k是n的全部约数) 因为约数会非常大所以不能打表,仅仅能单个算. 再因为最后要除以n,假设做除法就不能直接取模,所以我们在算每一次pow(n,n/k)的时候,都少乘一个n,这样就相当于除法了…
传送门 Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7327   Accepted: 2416 Description Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms.…
题意 求$ \sum_{i=1}^n gcd(i,n) $ 给定 $n(1\le n\le 2^{32}) $. 链接 题解 欧拉函数 $φ(x)$ :1到x-1有几个和x互质的数. gcd(i,n)必定是n的一个约数. 若p是n的约数,那么gcd(i,n)==p的有$φ(n/p)$个数,因为要使gcd(i,n)==p,i/p和n/p必须是互质的. 那么就是求i/p和n/p互质的i在[1,n]里有几个,就等价于 1/p,2/p,...,n/p 里面有几个和n/p互质,即φ(n/p). 求和的话,…