from: https://pengfoo.com/post/machine-learning/2017-04-11 GloVe(Global Vectors for Word Representation)是斯坦福大学发表的一种word embedding 方法,GloVe: Global Vectors for Word Representation,它看起来很new,其实有着old school的内核.GloVe尝试借鉴NNLM和word2vec的优势来弥补旧方法的劣势,取得了不错的效果.…
I. 复习word2vec的核心思路 1. Skip-gram 模型示意图: 2.word vectors的随机梯度 假设语料库中有这样一行句子: I love deep learning and NLP 中心词为deep,那么在计算梯度的时候则可以得到如下的梯度向量. 可以很明显地看到该向量非常稀疏.常见的解决办法有两种:一是使用稀疏矩阵更新运算来更新矩阵\(U,V\)的特定的列向量.二是使用哈希来更新,即key为word string,value是对应的列向量. II. 近似 1. 负采样…
Tutorial on word2vector using GloVe and Word2Vec 2018-05-04 10:02:53 Some Important Reference Pages First: Reference Page: https://github.com/IliaGavrilov/NeuralMachineTranslationBidirectionalLSTM/blob/master/1_Bidirectional_LSTM_Eng_to_French.ipynb…
5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.8 GloVe word vectors GloVe词向量 Pennington J, Socher R, Manning C. Glove: Global Vectors for Word Representation[C]// Conference on Empirical Methods in Natural Language Processing. 2014:1532-1543. 示例 I want a gl…
理解GloVe模型 概述 模型目标:进行词的向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息.输入:语料库输出:词向量方法概述:首先基于语料库构建词的共现矩阵,然后基于共现矩阵和GloVe模型学习词向量.开始统计共现矩阵训练词向量结束统计共现矩阵 设共现矩阵为XX,其元素为Xi,jXi,j. Xi,jXi,j的意义为:在整个语料库中,单词ii和单词jj共同出现在一个窗口中的次数. 举个栗子: 设有语料库: i love you but you love him i am sad这个小小的语…
Package Contents To train your own GloVe vectors, first you tools. An example is included in demo.sh, which you can modify as necessary. This four main tools in this package are: ) vocab_count This tool requires an input corpus that should already co…
什么是GloVe GloVe(Global Vectors for Word Representation)是一个基于全局词频统计(count-based & overall statistics)的词表征(word representation)工具,它可以把一个单词表达成一个由实数组成的向量,这些向量捕捉到了单词之间一些语义特性,比如相似性(similarity).类比性(analogy)等.我们通过对向量的运算,比如欧几里得距离或者cosine相似度,可以计算出两个单词之间的语义相似性.…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/232 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learning)>的全套学习笔记,对应的课程视频可以在 这里 查看…