本文来自8月11日在北京举行的 Flink Meetup会议,分享来自于施晓罡,目前在阿里大数据团队部从事Blink方面的研发,现在主要负责Blink状态管理和容错相关技术的研发.   本文主要内容如下: 有状态的流数据处理: Flink中的状态接口: 状态管理和容错机制实现: 阿里相关工作介绍: 一.有状态的流数据处理   1.1.什么是有状态的计算      计算任务的结果不仅仅依赖于输入,还依赖于它的当前状态,其实大多数的计算都是有状态的计算. 比如wordcount,给一些word,其计…
本文主要内容如下: 有状态的流数据处理: Flink中的状态接口: 状态管理和容错机制实现: 阿里相关工作介绍: 一.有状态的流数据处理# 1.1.什么是有状态的计算# 计算任务的结果不仅仅依赖于输入,还依赖于它的当前状态,其实大多数的计算都是有状态的计算. 比如wordcount,给一些word,其计算它的count,这是一个很常见的业务场景.count做为输出,在计算的过程中要不断的把输入累加到count上去,那么count就是一个state. 1.2.传统的流计算系统缺少对于程序状态的有效…
摘自Apache官网 一.State的基本概念 什么叫State?搜了一把叫做状态机制.可以用作以下用途.为了保证 at least once, exactly once,Flink引入了State和Checkpoint 某个task/operator某时刻的中间结果 快照(snapshot) 程序一旦crash,恢复用的 机器学习模型的参数 二.Flink中包含的State Keyed State和Opreator State 1.Keyed State基于KeyedStream的状态.这个状…
一.状态编程 Flink 内置的很多算子,数据源 source,数据存储 sink 都是有状态的,流中的数据都是 buffer records,会保存一定的元素或者元数据.例如 : ProcessWindowFunction会缓存输入流的数据,ProcessFunction 会保存设置的定时器信息等等. 1,算子状态(operator state) 算子状态的作用范围限定为算子任务.这意味着由同一并行任务所处理的所有数据都可以访问到相同的状态,状态对于同一任务而言是共享的.Flink为算子状态提…
数据流容错机制 该文档翻译自Data Streaming Fault Tolerance,文档描述flink在流式数据流图上的容错机制. ------------------------------------------------------------------------------------------------- 一.介绍 flink提供了可以一致地恢复数据流应用的状态的容错机制,该机制保证即使在错误发生后,反射回数据流记录的程序的状态操作最终仅执行一次.值得注意的是,该保证可…
简介 在微服务架构中,微服务之间的依赖关系错综复杂,难免的某些服务会出现故障,导致服务调用方出现远程调度的线程阻塞.在高负载的场景下,如果不做任何处理,可能会引起级联故障,导致服务调用方的资源耗尽甚至整个系统奔溃.Hystrix是一个由Netflix开源的一个延迟和容错库,它通过添加延迟容忍和容错逻辑来帮助控制这些微服务之间的交互.Hystrix通过隔离服务之间的访问点.停止跨服务的级联故障并提供回退选项来实现这一点,所有这些选项都提高了系统的总体弹性. 项目介绍 sc-parent,父模块(请…
第一节 初识 Flink 在数据激增的时代,催生出了一批计算框架.最早期比较流行的有MapReduce,然后有Spark,直到现在越来越多的公司采用Flink处理.Flink相对前两个框架真正做到了高吞吐,低延迟,高性能. 1. Flink 是什么? 1) Flink 的发展历史 在 2010 年至 2014 年间,由柏林工业大学.柏林洪堡大学和哈索普拉特纳研究所联合发起名为"Stratosphere:Information Management on the Cloud"研究项目,该…
简介 Apache Flink提供了一种容错机制,可以持续恢复数据流应用程序的状态. 该机制确保即使出现故障,经过恢复,程序的状态也会回到以前的状态. Flink 主持 at least once 语义 和 exactly once 语义 Flink 通过定期地做 checkpoint 来实现容错 和 恢复, 容错机制不断地生成数据流的快照, 而不会对性能产生太大的影响. 流应用程序的状态存储在一个可配置的地方(例如主节点或HDFS) 如果出现车程序故障(由于机器.网络或软件故障), Flink…
Flink 作为新一代基于事件流的.真正意义上的流批一体的大数据处理引擎,正在逐渐得到广大开发者们的青睐.就从我自身的视角看,最近也是在数据团队把一些原本由 Flume.SparkStreaming.Storm 编写的流式作业往 Flink 迁移,它们之间的优劣对比本篇暂不讨论. 近期会总结一些 Flink 的使用经验和原理的理解,本篇先谈谈 Flink 中的状态和容错机制,这也是 Flink 核心能力之一,它支撑着 Flink Failover,甚至在较新的版本中,Flink 的 Querya…
Storm学习笔记 - 消息容错机制 文章来自「随笔」 http://jsynk.cn/blog/articles/153.html 1. Storm消息容错机制概念 一个提供了可靠的处理机制的spout需要记录自己emit(发射)的tuple(消息元祖),当下游bolt处理tuple或者子tuple失败时spout能够重新发射. Storm通过调用Spout的nextTuple()发送一个tuple.为实现可靠的消息处理,首先要给每个发出的tuple带上唯一的ID,并且将ID作为参数传递给So…