本系列笔记内容参考来源为李航<统计学习方法> k近邻是一种基本分类与回归方法,书中只讨论分类情况.输入为实例的特征向量,输出为实例的类别.k值的选择.距离度量及分类决策规则是k近邻法的三个基本要素. k近邻算法 给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入实例分为这个类. k近邻法没有显示的学习过程. k近邻模型 距离度量 一般为欧式距离,Lp距离.Minkowski距离等 由不同的距离度量所确定的最近邻点是不同的. 式…
1.kNN算法的思想:给定一个训练数据集,对新的输入实例,在训练集中找到与该实例最近邻的k个实例,这k个实例的多数属于某类,就把输入实例分为这个类. 2.算法 (1)根据给定的距离度量,在训练集T中找出与实例x最邻近的k个点,涵盖着k个点的邻域记做; (2)在中根据分类决策规则(如多数表决)决定x的类别y: 其中,I为指示函数,即当yi=cj时I为1,否则为0. 距离度量一般是Lp距离或者是Minkowski距离. xi,xj的Lp距离定义为: 这里p≥1,当p=2时,称为欧氏距离:当p=1时,…
统计学习方法与Python实现(二)——k近邻法 iwehdio的博客园:https://www.cnblogs.com/iwehdio/ 1.定义 k近邻法假设给定一个训练数据集,其中的实例类别已定.分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决的方式进行预测.k近邻法不具有显式的学习过程,而实际上是利用训练数据集对特征空间进行划分,并作为其分类的模型.k近邻法的三个基本要素是 k值的选择.距离度量和分类决策规则. k近邻法的模型是将特征空间划分成一些称为单元的子空间,并且…
k 近邻法(k-nearest neighbor,k-NN) 是一种基本分类与回归方法.本书只讨论分类问题中的k近邻法.k近邻法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类.k近邻法假设给定一个训练数据集,其中的实例类别已定.分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决等方式进行预测.因此,k近邻法不具有显式的学习过程.k近邻法实际上利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”.k值的选择.距离度量及分类决策规则是k近邻法的三个基…
对新的输入实例,在训练数据集中找到与该实例最邻近的\(k\)个实例,这\(k\)个实例的多数属于某个类,就把该输入实例分给这个类. \(k\) 近邻法(\(k\)-nearest neighbor, \(k\)-NN)是一种基本分类与回归方法,这里只讨论分类问题中的\(k\)-NN. 三要素: \(k\)值的选择 距离度量 分类决策规则 \(k\)近邻算法 输入:训练数据集\(T = \{ (x_1,y_1), (x_2,y_2), \cdot \cdot \cdot , (x_N,y_N) \…
K近邻法(K-nearest neighbor,k-NN),这里只讨论基于knn的分类问题,1968年由Cover和Hart提出,属于判别模型 K近邻法不具有显式的学习过程,算法比较简单,每次分类都是根据训练集中k个最近邻,通过多数表决的方式进行预测.所以模型需要保留所有训练集数据,而象感知机这样的模型只需要保存训练后的参数即可,训练集不需要保留 K近邻算法 K近邻法三要素 和其他统计学习方法不同的,K近邻法的三要素是,k值的选择,距离度量和分类决策规则 距离度量 首先如何定义"近"?…
<统计学习方法>(第二版)第3章 3 分类问题中的k近邻法 k近邻法不具有显式的学习过程. 3.1 算法(k近邻法) 根据给定的距离度量,在训练集\(T\)中找出与\(x\)最邻近的\(k\)个点,涵盖这k个点的x的邻域记作\(N_k(x)\) 在\(N_k(x)\)中根据分类决策规则(如多数表决)决定\(x\)的类别\(y\) 3.2 k近邻模型的三个基本要素 距离度量 特征空间中,对每个实例点的距离是两个实例点相似程度的反映. \(L_p\)距离: \[ L_p(x_i,x_j)=(\su…
K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出了.这里就运用了KNN的思想.KNN方法既可以做分类,也可以做回归,这点和决策树算法相同. KNN做回归和分类的主要区别在于最后做预测时候的决策方式不同.KNN做分类预测时,一般是选择多数表决法,即训练集里和预测的样本特征最近的K个样本,预测为里面有最多类别数的类别.而KNN做回归时,一般是选择平均…
在K近邻法(KNN)原理小结这篇文章,我们讨论了KNN的原理和优缺点,这里我们就从实践出发,对scikit-learn 中KNN相关的类库使用做一个小结.主要关注于类库调参时的一个经验总结. 1. scikit-learn 中KNN相关的类库概述 在scikit-learn 中,与近邻法这一大类相关的类库都在sklearn.neighbors包之中.KNN分类树的类是KNeighborsClassifier,KNN回归树的类是KNeighborsRegressor.除此之外,还有KNN的扩展,即…
k近邻法是一种基本分类与回归方法.本章只讨论k近邻分类,回归方法将在随后专题中进行. 它可以进行多类分类,分类时根据在样本集合中其k个最近邻点的类别,通过多数表决等方式进行预测,因此不具有显式的学习过程.其本质是利用训练数据集对特征向量空间进行划分,并作为其分类的模型.k值选择.距离度量以及分类决策规则是其三个基本要素. 一.模型: 特征空间中,对每个训练点,距离该点比其他点更近的所有点组成一个区域(单元),每个训练点拥有一个区域(单元),所有训练点的区域(单元)构成对特征空间的一个划分.最近邻…
k近邻法(k-nearest neighbor,k-NN) 输入:实例的特征向量,对应于特征空间的点:输出:实例的类别,可以取多类. 分类时,根据其k个最近邻的训练实例的类别,通过多数表决等方式进行预测. 实例类别已定,不具有显式的学习过程.k近邻法实际上利用训练数据集对特征 向量空间进行划分,并作为其分类的"模型". 三个基本要素:k值的选择.距离度量及分类决策规则.   KDtree 实现k近邻法时,主要考虑的问题是如何对训练数据进行快速k近邻搜索. k近邻法最简单的实现方法是线性…
简介 K近邻法(knn)是一种基本的分类与回归方法.k-means是一种简单而有效的聚类方法.虽然两者用途不同.解决的问题不同,但是在算法上有很多相似性,于是将二者放在一起,这样能够更好地对比二者的异同. 算法描述 knn 算法思路:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. k近邻模型的三个基本要素: k值的选择:k值的选择会对结果产生重大影响.较小的k值可以减少近似误差,但是会增加估计误差:较大的k值可以减小估计误差,但…
简介 k近邻法(k-nearest neighbors algorigthm) 是一种最基本的用于分类和回归的方法之一,当没有关于训练数据的分布时,首先最容易想到的就是采用k近邻法. k近邻法输入为实例的特征向量,输出为实例的类别.算法思想是,给定训练数据集,对应输入空间的各个数据点,要判断一个新的数据点的分类,则取目标数据点最近的k个数据点, 然后统计这k个数据点中每个分类各占多少,并取数量最多的那个分类作为目标数据点的分类. 上面说到的“最近”?那么何为最近? k近邻法通常采用欧式距离来表征…
k近邻法(k nearest neighbor algorithm,k-NN)是机器学习中最基本的分类算法,在训练数据集中找到k个最近邻的实例,类别由这k个近邻中占最多的实例的类别来决定,当k=1时,即类别为最近邻的实例的类别. 如上图所示(引自wiki),当k=3时,此时红色的个数为2,则绿色的输入实例的类别为红色的三角形,当k=5时,此时蓝色的个数为3,输入实例的类别为蓝色的四边形.    在分类过程中,k值通常是人为预先定义的常值,从上图可以看出,k值的选取对会对结果有很多的影响.大的k值…
上一篇文章讲了k近邻法,以及使用kd树构造数据结构,使得提高最近邻点搜索效率,但是这在数据点N 远大于 2^n 时可以有效的降低算法复杂度,n为数据点的维度,否则,由于需要向上回溯比较距离,使得实际效率总是很低(接近线性扫描).比如SIFT特征矢量128维,SURF特征矢量64维,维度都比较大,N 远大于 2^n 可能无法满足.此外,由于每个最近邻点都需要回溯到根节点才算结束,那么,在获取k个近邻点时,必然存在大量不必要的回溯点,这些都需要另寻其他查询方法. 一个简单的改进思路就是将“查询路径”…
/*先把标题给写了.这样就能经常提醒自己*/ 1. k近邻算法 k临近算法的过程,即对一个新的样本,找到特征空间中与其最近的k个样本,这k个样本多数属于某个类,就把这个新的样本也归为这个类. 算法  输入:训练数据集 其中为样本的特征向量,为实例的类别,i=1,2,…,N:样本特征向量x(新样本): 输出:样本x所属的类y. (1)根据给定的距离度量,在训练集T中找出与x最相邻的k个点,涵盖这k个点的邻域记作: (2)在中根据分类决策规则(如多数表决)决定x的类别y:              …
统计学习方法c++实现之二 k近邻算法 前言 k近邻算法可以说概念上很简单,即:"给定一个训练数据集,对新的输入实例,在训练数据集中找到与这个实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入分为这个类."其中我认为距离度量最关键,但是距离度量的方法也很简单,最长用的就是欧氏距离,其他的距离度量准则实际上就是不同的向量范数,这部分我就不赘述了,毕竟这系列博客的重点是实现.代码地址:https://github.com/bBobxx/statistical-learning k…
全文引用自<统计学习方法>(李航) K近邻算法(k-nearest neighbor, KNN) 是一种非常简单直观的基本分类和回归方法,于1968年由Cover和Hart提出.在本文中,主要介绍了分类方法.其输入为特征空间中的点,输出为给定实例的类别,可以选择多个类输出.K近邻算法通过给定的训练集对特征空间进行分类,分类时,对于输入的实例,通过判断其最近的k个实例的类别,选择多数类别为本实例的最终分类.因此,k近邻算法本质上并不具有显示的学习过程. 本篇文章通过介绍K近邻算法的k值选择.距离…
通过上文可知k近邻算法的基本原理,以及算法的具体流程,kd树的生成和搜索算法原理.本文实现了kd树的生成和搜索算法,通过对算法的具体实现,我们可以对算法原理有进一步的了解.具体代码可以在我的github上查看. 代码 #!/usr/bin/python3 # -*- coding:utf-8 -*- import sys import numpy as np class Kdtree(object): ''' 类名: Kdtree 用于存储kd树的数据 成员: __value: 训练数据,保存数…
本文,意在说明<统计学习方法>第九章EM算法的三硬币例子,公式(9.5-9.6如何而来) 下面是(公式9.5-9.8)的说明, 本人水平有限,怀着分享学习的态度发表此文,欢迎大家批评,交流.感谢您的阅读.欢迎转载本文,转载时请附上本文地址:http://www.cnblogs.com/Dzhouqi/p/3203776.html另外:欢迎访问我的博客 http://www.cnblogs.com/Dzhouqi/…
一种基本分类与回归方法 工作原理是:1.训练样本集+对应标签 2.输入没有标签的新数据,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签. 3.一般来说,我们只选择样本数据集中前k个最相似的数据. 4.选择k个最相似数据中出现次数最多的分类,作为新数据的分类. k-近邻算法没有进行数据的训练,直接使用未知的数据与已知的数据进行比较,得到结果.因此,可以说k-邻近算法不具有显式的学习过程. 距离度量:欧氏距离 工作流程: 收集数据:可以使用爬虫进…
1.k近邻算法的思想 给定一个训练集,对于新的输入实例,在训练集中找到与该实例最近的k个实例,这k个实例中的多数属于某个类,就把该输入实例分为这个类. 因为要找到最近的k个实例,所以计算输入实例与训练集中实例之间的距离是关键! k近邻算法最简单的方法是线性扫描,这时要计算输入实例与每一个训练实例的距离,当训练集很大时,非常耗时,这种方法不可行,为了提高k近邻的搜索效率,常常考虑使用特殊的存储结构存储训练数据,以减少计算距离的次数,具体方法很多,这里介绍实现经典的kd树方法. 2.构造kd树 kd…
KNN是一种基本分类与回归方法,本篇只总结分类问题中的KNN. 输入:样本的特征向量,对应于特征空间中的点 输出:样本的类别,可取多类 算法思想:给定一个样本类别已知的训练数据集,对于新样本,根据其K个最近邻训练样本的类别,通过多数表决等方式进行类别预测.(不具有显式的学习过程) 实际是利用训练数据集对特征向量空间划分,并将其作为其分类的“模型” 三个基本要素(当三个要素确定后,结果唯一确定): K值的选择(交叉验证法):K太小,整体模型会变得复杂,易过拟合:K太大,模型太简单. 距离度量(常用…
分类一般分为两种: 积极学习法:先根据训练集构造模型,然后根据模型对测试集分类 消极学习法:推迟建模,先简单存储训练集,等到给定测试集时再进行建模,如KNN算法. 1. 简述 KNN的核心思想就是:物以类聚,人以群分 即给定一个训练数据集,对于新的输入实例,在训练集中找到与该实例最邻近的K个实例,这K个实例多数属于某个类,就把该输入实例分为这个类 2. K值的选择 若K值较小,相当于用较小邻域的实例进行预测,近似误差减小,估计误差增大,对邻近的实例点敏感,若邻近点恰好是噪声点,则预测出错.总之,…
k近邻算法(KNN): 三要素:k值的选择,距离的度量和分类决策规则 KMeans算法,是一种无监督学习聚类方法: 通过上述过程可以看出,和EM算法非常类似.一个简单例子, k=2: 畸变函数(distortion function): 时间复杂度:O(tKmn),其中,t为迭代次数,K为簇的数目,m为样本数,n为维数 空间复杂度:O((m+K)n),其中,K为簇的数目,m为样本数,n为维数…
书中存在的一些疑问 kd树的实现过程中,为何选择的切分坐标轴要不断变换?公式如:x(l)=j(modk)+1.有什么好处呢?优点在哪?还有的实现是通过选取方差最大的维度作为划分坐标轴,有何区别? 第一种方法网上也没具体的解释,我不是很清楚其原因(可能要去论文上找原因). 不过第二种方法的话,方差越大,说明这个维度数据的相似性就越差,就越容易通过选取中点的方式将数据集分开,kd树的效率就越高,试想如果你挑了一个维度其中数据全为一样,那么kd树的建立过程就无法将使用挑选中位数的方法来达到,而且后面的…
KNN算法 基本模型:给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例.这k个实例的多数属于某个类,就把输入实例分为这个类. KNN没有显式的学习过程. KNN使用的模型实际上对应于特征空间的划分.特征空间中,对每个训练实例点\(x_i\),距离该点比其它点更近的所有点组成一个区域,叫作单元(cell).每个训练实例拥有一个单元.所有的训练实例点的单元构成对特征空间的一个划分.如下图所示. 三要素:KNN模型由三个基本要素--距离度量,K值选择,分类决策决定.当三要…
基本思想: 给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入实例分为这个类 距离度量: 特征空间中两个实例点的距离是两个实例点相似程度的反映,一般常用欧氏距离,更一般的有行内公式\(L_p\)或者Minkowski距离 \[L_p(x_i,x_j)=(\sum_{l=1}^{n}|x_i^{(l)}-x_j^{(l)}|^p)^{\frac{1}{p}}\] 当\(p=1\)时,为曼哈顿距离,\(L_1(x_i,x_j)=\s…
logistic distribution 设X是连续随机变量,X服从逻辑斯谛分布是指X具有下列分布函数和密度函数: 式中,μ为位置参数,γ>0为形状参数. 密度函数是脉冲函数 分布函数是一条Sigmoid曲线(sigmoid curve)即为阶跃函数     二项逻辑斯谛回归模型 二项逻辑斯谛回归模型是如下的条件概率分布 x∊Rn是输入,Y∊{0,1}是输出,w∊Rn和b∊R是参数, w称为权值向量,b称为偏置,w·x为w和x的内积. 可以求得P(Y=1|x)和P(Y=0|x). 逻辑斯谛回归…
参考: http://www.cnblogs.com/juefan/p/3807713.html http://blog.csdn.net/v_july_v/article/details/8203674/ http://www.cnblogs.com/imczxj/p/3941703.html…