本文示例代码和数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在前面的基于geopandas的空间数据分析系列文章中,我们已经对geopandas的基础知识.基础可视化,以及如何科学绘制分层设色地图展开了深入的学习,而利用geopandas+matplotlib进行地理可视化固然能实现常见的地图可视化,且提供了操纵图像的极高自由度,但对使用者matplotlib的熟悉程度要求较高,制作一幅地图可视化作…
本文示例代码.数据及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在上一篇文章中我们详细学习了geoplot中较为基础的三种绘图API:pointplot().polyplot()以及webmap(),而本文将会承接上文的内容,对geoplot中较为实用的几种高级绘图API进行介绍. 图1 本文是基于geopandas的空间数据分析系列文章的第7篇,通过本文你将学习geoplot中的高级绘图API.…
本文示例代码及数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 最近一段时间(本文写作于2020-07-10)geopandas与geoplot两个常用的GIS类Python库都进行了一系列较为重大的内容更新,新增了一些特性,本文就将针对其中比较实际的新特性进行介绍. 2 geopandas&geoplot近期重要更新内容 2.1 geopandas近期重要更新 2.1.1 新增高性能文件格式 从geo…
本文示例文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 就在几天前,geopandas释放了其最新正式版本0.9.0,作为一次比较大的版本更新,geopandas为我们带来了一系列新特性,今天的文章我们就来一起看看有哪些主要的功能变化吧~ 图1 2 geopandas 0.9.0重要新特性一览 出于对稳定性的考虑,我选择新建虚拟环境来探索新版本geopandas,完整命令如下(顺便一提,0.9.0版本…
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 大家好我是费老师,geopandas作为在Python中开展GIS分析的利器,可以帮助我们快捷地解决很多日常GIS操作需求.而我们平时工作研究中使用到的各种矢量数据,由于原始数据加工过程的不规范等问题,偶尔会导致某些要素自身的矢量数据信息非法. 这样的非法要素读到geopandas或是PostGIS等常用GIS工具中,在进行一些矢量计算操作时会触…
本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 就在前不久,我们非常熟悉的Python地理空间分析库geopandas更新到了0.10.0版本,而伴随最近一段时间其针对新版本的一些潜在bug进行的修复,写作本文时最新的正式版本为0.10.2.此次0.10.x版本为我们带来了诸多令人兴奋的新功能新特性,本文就将带大家一睹其中一些比较重要的内容. 2 geopandas 0.10版本重要新特…
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 大家好我是费老师,就在几天前,geopandas发布了其0.11.0正式版本,距离其上一个版本(0.10.2)发布已过去大半年,在这一次的新版本更新中又为我们带来了哪些重要的新特性呢,今天的文章中我就来带大家一探究竟. 2 geopandas 0.11版本重要新特性一览 你可以在旧版本geopandas的基础上进行升级,也可以新建虚拟环境直接安装…
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web应用开发的第十一期,在之前两期的教程内容中,我们掌握了在Dash中创建完善的表单控件的方法. 而在今天的教程中,我们将介绍如何在Dash中高效地开发web应用中非常重要的文件上传及下载功能. 图1 2 在Dash中实现文件上传与下载 2.1 在Dash中配合dash-uploader实现文件上传 其…
自编函数是几乎每一种编程语言的基础功能,有些时候我们需要解决的问题可能没有完全一致的包中的函数来进行解决,这个时候自编函数就成了一样利器,而Python与R在这方面也有着一定的差别,下面举例说明: Python #一个例子def gold(n=1000): x = [1,1] for i in range(n): x.append(x[-1]+x[-2]) print('黄金分割比的近似值:'+str(x[-2]/x[-1])) gold(10000) 黄金分割比的近似值:0.618033988…
1 简介 在数据分析任务中,从原始数据读入,到最后分析结果出炉,中间绝大部分时间都是在对数据进行一步又一步的加工规整,以流水线(pipeline)的方式完成此过程更有利于梳理分析脉络,也更有利于查错改正.pdpipe作为专门针对pandas进行流水线化改造的模块,为熟悉pandas的数据分析人员书写优雅易读的代码提供一种简洁的思路,本文就将针对pdpipe的用法进行介绍. 2 pdpipe常用功能介绍 pdpipe的出现极大地对数据分析过程进行规范,其主要拥有以下特性: 简洁的语法逻辑 在流水线…