OpenGL 实践之贝塞尔曲线绘制】的更多相关文章

说到贝塞尔曲线,大家肯定都不陌生,网上有很多关于介绍和理解贝塞尔曲线的优秀文章和动态图. 以下两个是比较经典的动图了. 二阶贝塞尔曲线: 三阶贝塞尔曲线: 由于在工作中经常要和贝塞尔曲线打交道,所以简单说一下自己的理解: 现在假设我们要在坐标系中绘制一条直线,直线的方程很简单,就是 y=x ,很容易得到下图: 现在我们限制一下 x 的取值范围为 0~1 的闭区间,那么可以得出 y 的取值范围也是 0~1. 而在 0~1 的区间范围内,x 能取的数有多少个呢?答案当然是无数个了. 同理,y 的取值…
原文:n阶贝塞尔曲线绘制(C/C#) 贝塞尔是很经典的东西,轮子应该有很多的.求n阶贝塞尔曲线用到了 德卡斯特里奥算法(De Casteljau's Algorithm) 需要拷贝代码请直接使用本文最后的例程,文章前面的大部分代码都不是最佳实践,是在编程过程中的摸索(走过的弯路),不过这些示范对笔者今后写算法启发很大. 要完成的功能是根据起点,终点和控制点,绘制n阶贝塞尔曲线 首先看n阶贝塞尔曲线的公式 公式中用了组合数,大数组合数计算也有算法: 简言之就是把  大数乘以大数除以大数  这个过程…
使用贝塞尔曲线绘制路径 大多数时候,我们在开发中使用的控件的边框是矩形,或者做一点圆角,是使得矩形的角看起来更加的圆滑. 但是如果我们想要一个不规则的图形怎么办?有人说,叫UI妹子做,不仅省事,还可以趁机接近她们(_:D).这又时候确实可以.但是如果是一个时刻变动的不规则图形,这样如果做成动图或者剪出很多张图,再叫UI妹子做的话,似乎也能解决, 但是实际效果吧,呵呵.好吧,iOS中我们其实不需要担心这个问题.使用UIBezierPath可以很容易的会址出一些复杂的图形. UIBezierPath…
canvas中二次贝塞尔曲线参数说明: cp1x:控制点1横坐标 cp1y:控制点1纵坐标 x: 结束点1横坐标 y:结束点1纵坐标 cp2x:控制点2横坐标 cp2y:控制点2纵坐标 z:结束点2横坐标 y:结束点2纵坐标 示例效果图如下: 示例代码如下: var canvas = document.getElementById('canvas'); var ctx = canvas.getContext('2d'); var width = 0; var height = 0; var ce…
效果图: <body> <canvas id="test" width="800" height="300"></canvas> <script type="text/javascript"> //一个工具函数,用于将角度从角度制转化成弧度制 function rads(x){ return Math.PI*x/180;} var canvas = document.getEle…
1.介绍: UIBezierPath :画贝塞尔曲线的path类 UIBezierPath定义 : 贝赛尔曲线的每一个顶点都有两个控制点,用于控制在该顶点两侧的曲线的弧度. 曲线的定义有四个点:起始点.终止点(也称锚点)以及两个相互分离的中间点. 滑动两个中间点,贝塞尔曲线的形状会发生变化. UIBezierPath :对象是CGPathRef数据类型的封装,可以方便的让我们画出 矩形 . 椭圆 或者 直线和曲线的组合形状 初始化方法: + (instancetype)bezierPath; /…
GitHub的Demo下载地址 使用UIBezierPath画图步骤: 创建一个UIBezierPath对象 调用-moveToPoint:设置初始线段的起点 添加线或者曲线去定义一个或者多个子路径 改变UIBezierPath对象跟绘图相关的属性.如,我们可以设置画笔的属性.填充样式等 UIBezierPath创建方法介绍 我们先看看UIBezierPath类提供了哪些创建方式,这些都是工厂方法,直接使用即可. + (instancetype)bezierPath; + (instancety…
贝塞尔曲线,很多人可能不太了解,什么叫做贝塞尔曲线呢?这里先做一下简单介绍:贝塞尔曲线也可以叫做贝济埃曲线或者贝兹曲线,它由线段与节点组成,节点是可拖动的支点,线段像可伸缩的皮筋.一般的矢量图形软件常利用贝塞尔曲线来精确画出曲线. 上面的介绍中,“线段像可伸缩的皮筋”这句话非常关键,但也特别好理解.至于贝塞尔曲线的详细内容大家可以查阅相关资料. Android提供的贝塞尔曲线绘制接口 在Android开发中,要实现贝塞尔曲线其实还是很简单的,因为Android已经给我们提供了相关接口,但此接口方…
相信很多同学都知道"贝塞尔曲线"这个词,我们在很多地方都能经常看到.利用"贝塞尔曲线"可以做出很多好看的UI效果,本篇博客就让我们一起学习"贝塞尔曲线". 贝塞尔曲线的原理 贝塞尔曲线是用一系列点来控制曲线状态的,这些点简单分为两类: 类型 作用 数据点 确定曲线的起始和结束位置 控制点 确定曲线的弯曲程度 一阶贝塞尔曲线 一阶曲线是没有控制点的,仅有两个数据点(A 和 B),最终效果一个线段. 动态过程可以参照下图(贝塞尔曲线相关的动态演示图片…
http://my.oschina.net/sweetdark/blog/183721 参数方程表现形式 在中学的时候,我们都学习过直线的参数方程:y = kx + b;其中k表示斜率,b表示截距(即与y轴的交点坐标).类似地,我们也可以用一个参数方程来表示一条曲线.1962年,法国工程师贝塞尔发明了贝塞尔曲线方程.关于贝塞尔曲线的详细介绍可以参考(维基贝塞尔).这里只介绍OpenGL实现贝塞尔的函数. OpenGl定义一条曲线时,也把它定义为一个曲线方程.我们把这条曲线的参数成为u,它的值域就…