题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18122 [思路] 点-双连通分量 求出bcc,判断每个bcc是否为二分图,如果不是二分图则bcc中一定存在一个奇圈,则bcc中的任意一点一定位于一个奇圈上. [代码] #include<cstdio> #include<cstring> #include<stack> #include<vector> using namesp…
题目大意:有n个骑士要在圆桌上开会,但是相互憎恶的两个骑士不能相邻,现在已知骑士们之间的憎恶关系,问有几个骑士一定不能参加会议.参会骑士至少有3个且有奇数个. 题目分析:在可以相邻的骑士之间连一条无向边,构成一张图G.则问题变成了有几个节点不在奇圈(有奇数个节点的圈)内,并且一个点在圈内最多出现一次.如果G不连通,应该对每一个分量分别求解.奇圈上的点一定在同一个双连通分量内,要找出所有的双连通分量.但是能构成二分图的双连通分量中一定没有奇圈,不能构成二分图的双连通分量中一定含有奇圈,并且分量中所…
[POJ 2942]Knights of the Round Table(双联通分量+染色判奇环) Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 11661   Accepted: 3824 Description Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, an…
Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, anddrinking with the other knights are fun things to do. Therefore, it is not very surprising that in recentyears the kingdom of King Arthur has exp…
http://poj.org/problem?id=2942 各种逗.... 翻译白书上有:看了白书和网上的标程,学习了..orz. 双连通分量就是先找出割点,然后用个栈在找出割点前维护子树,最后如果这个是割点那么子树就都是双连通分量,然后本题求的是奇圈,那么就进行黑白染色,判断是否为奇圈即可.将不是奇圈的所有双连通分量的点累计起来即可. #include <cstdio> #include <cstring> #include <cmath> #include <…
题意:多个骑士要开会,3人及以上才能凑一桌,其中部分人已经互相讨厌,肯定不坐在同一桌的相邻位置,而且一桌只能奇数个人才能开台.给出多个人的互相讨厌图,要求多少人开不成会(注:会议不要求同时进行,一个人开多个会不冲突)? 分析: 给的是互相讨厌的图,那么转成互相喜欢的吧,扫一遍,如果不互相讨厌就认为互相喜欢,矩阵转邻接表先. 有边相连的两个点代表能坐在一块.那么找出一个圈圈出来,在该圈内的点有奇数个人的话肯定能凑成1桌.圈圈?那就是简单环了,跟点双连通分量的定义好像一样:每个点都能同时处于1个及以…
尤其是不要谈了些什么,我想A这个问题! FML啊.....! 题意来自 kuangbin: 亚瑟王要在圆桌上召开骑士会议.为了不引发骑士之间的冲突. 而且可以让会议的议题有令人惬意的结果,每次开会前都必须对出席会议的骑士有例如以下要求: 1.  相互憎恨的两个骑士不能坐在直接相邻的2个位置: 2.  出席会议的骑士数必须是奇数,这是为了让投票表决议题时都能有结果.   注意:1.所给出的憎恨关系一定是双向的.不存在单向憎恨关系. 2.因为是圆桌会议.则每一个出席的骑士身边必然刚好有2个骑士. 即…
题目链接 题意及题解参见lrj训练指南 #include<bits/stdc++.h> using namespace std; ; int n,m; int dfn[maxn],low[maxn],time_tag; int bccno[maxn],bcc_cnt; int iscut[maxn]; int A[maxn][maxn]; vector<int> adj[maxn]; vector<int> bcc[maxn]; int odd[maxn]; struc…
圆桌会议必须满足:奇数个人参与,相邻的不能是敌人(敌人关系是无向边). 求无论如何都不能参加会议的骑士个数.只需求哪些骑士是可以参加的. 我们求原图的补图:只要不是敌人的两个人就连边. 在补图的一个奇圈里(由奇数个点组成的环)每个点都是可以参加的.而一个奇圈一定在点双连通分量里,所以我们把原图的每个点双连通分量找出来,然后判断是否有奇圈.用到了几个引理: 非二分图至少有一个奇圈. 点双连通分量如果有奇圈,那么每个点都在某个奇圈里(不一定是同一个). 于是问题转化为对每个点双连通分量,判断它是不是…
题目大概说要让n个骑士坐成一圈,这一圈的人数要是奇数且大于2,此外有些骑士之间有仇恨不能坐在一起,问有多少个骑士不能入座. 双连通图上任意两点间都有两条不重复点的路径,即一个环.那么,把骑士看做点,相互不仇恨的骑士间连边,能坐在一圈骑士的肯定在同一个点双连通分量上. 不过还有个条件是人数要大于2: 有这么一个结论:如果一个双连通分量存在奇圈(点数为奇数的环),那么这个双连通分量里所有点一定会包含在某一个奇圈内. 大概是因为,双连通分量里面点为奇数个显然都包含在奇圈里:而如果是偶数个,一部分就包含…