Fauce:Fast and Accurate Deep Ensembles with Uncertainty for Cardinality Estimation 论文解读(VLDB 2021) 本篇博客是对Fauce:Fast and Accurate Deep Ensembles with Uncertainty for Cardinality Estimation 论文的解读.原文链接为p1950-liu.pdf (vldb.org) 本文设计一种基于集成深度神经网络的基于查询的选择度估…
A Unified Deep Model of Learning from both Data and Queries for Cardinality Estimation 论文解读(SIGMOD 2021) 本篇博客是对A Unified Deep Model of Learning from both Data and Queries for Cardinality Estimation的一些重要idea的解读,原文连接为:A Unified Deep Model of Learning f…
paper-CaiPan.pdf http://conferences.sigcomm.org/sigcomm/2005/paper-CaiPan.pdf…
Deep Upsupervised Cardinality Estimation 本篇博客是对Deep Upsupervised Cardinality Estimation的解读,原文连接为:https://dl.acm.org/doi/pdf/10.14778/3368289.3368294 本文介绍了如何使用深度自回归模型(如:MADE.transformer)来进行基数估计的任务(利用模型训练拟合数据分布) 特点: 使用autoregressive model,无监督学习 没有做任何独立…
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks ICML 2017 Paper:https://arxiv.org/pdf/1703.03400.pdf Code for the regression and supervised experiments:https://github.com/cbfinn/maml Code for the RL experiments:https://github.com/cb…
DART: a fast and accurate RNA-seq mapper with a partitioning strategyDART:使用分区策略的快速准确的RNA-seq映射器 Abstract Motivation(动机): 近年来,大规模并行cDNA测序(RNA-Seq)技术已成为提供高分辨率测量表达和检测低丰度转录本的高灵敏度的强大工具. 但是,RNA-seq数据需要大量的计算量. 最根本和关键的步骤是将每个序列片段与参考基因组进行比对.近年来已经开发了各种从头拼接的RNA…
文献名:Fast and accurate bacterial species identification in urine specimens using LC-MS/MS mass spectrometry and machine learning(利用质谱技术和机器学习模型在尿液样本中快速准确地进行菌种鉴定) doi: 10.1074/mcp.TIR119.001559 期刊名:Mol Cell Proteomics 作者:Florence Roux-Dalvai 通讯作者:Arnaud…
Paper Information Titlel:<Semi-Supervised Classification with Graph Convolutional Networks>Authors:Thomas Kipf, M. WellingSource:2016, ICLRPaper:Download Code:Download 致敬  Thomas Kipf 我原以为将  GCN 发扬光大的人应该是一位老先生,毕竟能将一个理论影响全世界的人必应该有很多的知识储备(主观直觉),然后我发现自…
论文题目:<Structural Deep Network Embedding>发表时间:  KDD 2016 论文作者:  Aditya Grover;Aditya Grover; Jure Leskovec论文地址:  DownloadGithub:      Go1.Go2 ABSTRACT Motivation 由于底层网络结构复杂,Shallow model 无法捕捉高度非线性的网络结构,导致网络表示次优. 因此,如何找到一种能够有效捕捉高度非线性网络结构并保留全局和局部结构的方法是…
Paper Information Title:<Improved Deep Embedded Clustering with Local Structure Preservation>Authors:Xifeng Guo, Long Gao, Xinwang Liu, Jianping YinSources:2017, IJCAIOther:69 Citations, 71 ReferencesPaper:DownloadCode:Download Abstract 本文解决的问题:先前根据…