本系列文章由birdlove1987编写.转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/24601215 1.3D数学是一门和计算机几何相关的学科.计算几何则是研究用数值方法解决几何问题的学科. 3D数学解说怎样在3D空间中准确度量位置.距离和角度. 2.在3D数学里使用最广泛的度量体系是笛卡尔坐标系统.(笛卡尔数学由法国数学家Rene Descartes发明,并以他的名字命名) 3.关于数的类型:实数包括有理数和…
下面是一些概念只是一个简单的解释,这里是它的一个简单的了解! 当人们谈论,我能理解有关. 1.正交投影: 投影.这意味着降维操作. 全部的点都被拉平至垂直的轴(2D)或平面(3D)上.这样的类型的投影称作正交投影或平行投影. 2.镜像: 镜像也叫做反射,其作用是将物体沿直线(2D中)或者平面(3D)中"翻折",就像你和镜子中的你关系. 还是非常好理解的. 使缩放因子K(上一篇有提到)为-1,就非常easy得到镜像变换. 3.切变: 切变是一种坐标系"扭曲"的变换.非…
今天写了一个求点集合的凸包的一个算法,虽然结果求解出来了,但是想将过程用GDI+绘制出来,就需要将点绘制出来,然而c#GDI+中绘图的坐标与我们常用数学中笛卡尔坐标系是不一样的,所以就要转换GDI+中的坐标,通过以下的代码的就能够实现坐标系的转换,代码如下所示: //将GDI+中原始的坐标原点平移 g.TranslateTransform(0f, this.Height); //变换x,y轴的正方向 g.ScaleTransform(1f, -1f); ps:c#gdi+的坐标以区域的左上角为原…
本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/24662453 第一个知识点:多坐标系 基础:仅仅要选定原点和坐标轴就能在不论什么地方建立坐标系 从问题问出发:为什么要使用多坐标系.一个3D系利用其无限延伸性.就可以包括空间中全部的点,建立一个统一的世界,这样不是更简单吗? 实践中的答案:大量实践发现.在不同的环境下使用不同的坐标系更加方便(邓爷爷说过:实践是检验真理的唯一…
 本系列文章由birdlove1987编写,转载请注明出处.    文章链接:http://blog.csdn.net/zhurui_idea/article/details/24975031   矩阵是3D数学的重要基础,它主要用来描写叙述两个坐标系统间的关系,通过定义一种运算而将一个坐标系中的向量转换到还有一个坐标系中. 在线性代数中,矩阵就是一个以行和列形式组织的矩形数字块.向量是标量的数组,矩阵则是向量的数组.   矩阵的维度和记法 矩阵的维度被定义为它包含了多少行和多少列,一个 r *…
摄像机切换镜头 在游戏中常常会切换摄像机来观察某一个游戏对象,能够说.在3D游戏开发中,摄像头的切换是不可或缺的. 这次我们学习总结下摄像机怎么切换镜头. 代码: private var Camera0: GameObject; private var Camera1: GameObject; private var Camera2: GameObject; private var Camera: GameObject; function Start() { //获取摄像机对象 Camera =…
本系列文章由birdlove1987编写.转载请注明出处. 文章链接:http://blog.csdn.net/zhurui_idea/article/details/25102425 前面有一篇文章讨论过多坐标系的问题.有的人可能会问我那么多坐标系,它们之间怎么关联呢?嘿嘿~这次的内容能够为解决问题打基础奥. 线性变换基础(3D数学编程中.形式转换常常是错误的根源,所以这部分大家要多多思考,细致运算) 一般来说,方阵(就是行和列都相等的矩阵)能描写叙述随意的线性变换,所以后面我们一般用方阵来变…
无论学习.只看不练是坏科学. 因此,要总结回想这怎么生产MMROPG小地图的游戏.于MMROPG游戏类,在游戏世界中行走时导致各地,通常在屏幕的右上角,将有一个区域,以显示当前的游戏场景微缩.在游戏世界中的主角移动,小地图代表了一个小标记的主角也将移动. 那怎么实现咧? 首先须要确定两个贴图,第一个是右上角的小地图背景贴图,应该是从Y轴鸟瞰向下截取主角所在的位置大地图. 第二个就是主角的位置大贴图.在本例中,由于没有学习unity地图制作.所以地图用一个面对象取代,主角用立方体取代,使用GUI来…
本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/25400659 什么是四元数 复数是由实数加上虚数单位 i 组成,当中 i²  = -1 相似地,四元数都是由实数加上三个元素 i.j.k 组成,并且它们有例如以下的关系: i² = j² = k² = ijk = -1 每一个四元数都是 1.i.j 和 k 的线性组合,即是四元数一般可表示为a + bi + cj + dk.…
 本系列文章由birdlove1987编写.转载请注明出处.     文章链接: http://blog.csdn.net/zhurui_idea/article/details/24782661   開始之前:接上上篇说的,张宇老师说过线性代数研究的就是向量.事实上严谨的说,数学中专门研究向量的分之称作线性代数,线性代数是一个很有趣而且应用广泛的研究 领域,但它与3D数学关注的领域并不同样.3D数学主要关心向量和向量运算的几何意义.   零向量:不论什么集合,都存在 the additive…