光流(optical flow)和openCV中实现】的更多相关文章

光流(optical flow)是什么呢?名字很专业,感觉很陌生,但本质上,我们是最熟悉不过的了.因为这种视觉现象我们每天都在经历.从本质上说,光流就是你在这个运动着的世界里感觉到的明显的视觉运动(呵呵,相对论,没有绝对的静止,也没有绝对的运动).例如,当你坐在火车上,然后往窗外看.你可以看到树.地面.建筑等等,他们都在往后退.这个运动就是光流.而且,我们都会发现,他们的运动速度居然不一样?这就给我们提供了一个挺有意思的信息:通过不同目标的运动速度判断它们与我们的距离.一些比较远的目标,例如云.…
光流分为稠密光流和稀疏光流 光流(optic flow)是什么呢?名字很专业,感觉很陌生,但本质上,我们是最熟悉不过的了.因为这种视觉现象我们每天都在经历.从本质上说,光流就是你在这个运动着的世界里感觉到的明显的视觉运动(呵呵,相对论,没有绝对的静止,也没有绝对的运动).例如,当你坐在火车上,然后往窗外看.你可以看到树.地面.建筑等等,他们都在往后退.这个运动就是光流.而且,我们都会发现,他们的运动速度居然不一样?这就给我们提供了一个挺有意思的信息:通过不同目标的运动速度判断它们与我们的距离.一…
部分 VI视频分析 OpenCV-Python 中文教程(搬运)目录 39 Meanshift 和 和 Camshift 目标 • 本节我们要学习使用 Meanshift 和 Camshift 算法在视频中找到并跟踪目标对象39.1 Meanshift Meanshift 算法的基本原理是和很简单的.假设我们有一堆点(比如直方图反向投影得到的点),和一个小的圆形窗口,我们要完成的任务就是将这个窗口移动到最大灰度密度处(或者是点最多的地方).如下图所示: 初始窗口是蓝色的“C1”,它的圆心为蓝色方…
转载请注明出处! ! ! http://blog.csdn.net/zhonghuan1992 光流(optical flow)和openCV中实现 光流的概念:        是Gibson在1950年首先提出来的. 它是空间运动物体在观察成像平面上的像素运动的瞬时速度.是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的相应关系,从而计算出相邻帧之间物体的运动信息的一种方法. 一般而言.光流是因为场景中前景目标本身的移动.相机的运动,或者两者的共同运动所产…
 这篇文章写得太好了 ,感觉自己实在没有办法去补充这方面的知识点 我打算把高斯滤波和双边滤波还好好补充下 这篇文章转载自一个美丽的才女:小魏 连接地址:http://blog.csdn.net/xiaowei_cqu/article/details/7785365   如果想要彻底明白,就看看这位顶级大神的博客:http://blog.csdn.net/poem_qianmo/article/details/21479533   [OpenCV]邻域滤波:方框.高斯.中值.双边滤波 邻域滤波(卷…
Middlebury是每个研究光流算法的人不可能不使用的网站,Middlebury提供了许多标准的测试库,这极大地推进了光流算法的进展.Middlebury提供的标准库,其计算出的光流保存在后缀名为.flo的文件中,Middlebury本身也提供了读取.flo文件中C++源码和Matlab源码.尽管如此,将源码写成与OpenCV结合的形式是我们更期望的,以下我写的读写.flo文件的源码.相对于Middlebury给定的源码,更简洁易懂. #include "CCC/COMCV.h" #…
Optical Flow Estimation using a Spatial Pyramid Network   spynet  本文将经典的 spatial-pyramid formulation 和 deep learning 的方法相结合,以一种 coarse to fine approach,进行光流的计算.This estiamates large motions in a coarse to fine approach by warping one image of a pair…
作者:嫩芽33出处:http://www.cnblogs.com/nenya33/p/7122701.html 版权:本文版权归作者和博客园共有 转载:欢迎转载,但未经作者同意,必须保留此段声明:必须在文章中给出原文连接:否则必究法律责任 学习了一篇用CNN做光流的paper,简称FlowNet. 1. 论文题目  FlowNet: Learning Optical Flow with Convolutional Networks 2.背景 为什么想到用CNN做光流:最近提出的CNN架构可以做逐…
It currently develop and test on GPU devices only. This includes both discrete GPUs(NVidia,AMD), as well as integrated chips(AMD APU and intel HD devices). The ocl module can be found under the “modules”directory. In “modules/ocl/src” you can find th…
一.K近邻 有两个类,红色.蓝色.我将红色点标记为0,蓝色点标记为1.还要创建25个训练数据,把它们分别标记为0或者1.Numpy中随机数产生器可以帮助我们完成这个任务 import cv2 import numpy as np import matplotlib.pyplot as plt # 包含25个已知/训练数据的(x,y)值的特征集 trainData = np.random.randint(, , (, )).astype(np.float32) # 用数字0和1分别标记红色和蓝色…