背景知识: Zeroshot Learning,零次学习. 模型 对于 训练集 中 没有出现过 的 类别,能自动创造出相应的映射: X→Y. Low/Few-shot Learning.One-shot Learning,少/一次学习. 训练集中,每个类别 都有样本,但都只是 少量样本 (甚至只有一个). 摘要: 提出了一个Low-Shot Transfer Detector (LSTD),利用丰富的源领域(Source Domain)知识来构建一个高效的目标域(Target Domain)检测…
好久不写论文笔记了,不是没看,而是很少看到好的或者说值得记的了,今天被xinlei这篇paper炸了出来,这篇被据老大说xinlei自称idea of the year,所以看的时候还是很认真的,然后最后确实也发现了不少干货. 一.introduction 这篇文章主要还是解决detection中如何有效的利用context信息的问题,这里作者提出了有两种context信息:1.image-level的信息,也就是当前场景的信息,例如一张床出现在卧室里面,一个篮球出现在篮球场里面,都是极其合理的…
论文地址:https://arxiv.org/abs/2004.10934v1 github地址:https://github.com/AlexeyAB/darknet 摘要: 有很多特征可以提高卷积神经网络(CNN)的准确性.需要在大型数据集上对这些特征的组合进行实际测试,并需要对结果进行理论证明来验证这些特征的有效性. 某些特征仅在某些模型上运行,并且仅在某些问题上运行,或者仅在小型数据集上运行: 而某些特征(例如批归一化和残差连接)适用于大多数模型,任务和数据集. 我们假设此类通用特征包括…
论文链接:https://arxiv.org/abs/1904.08189 github:https://github.com/Duankaiwen/CenterNet 摘要 目标检测中,基于关键点的方法经常出现大量不正确的边界框,主要是由于缺乏对相关剪裁区域的额外监督造成的.本文提出一种有效的方法,以最小的资源探索剪裁区域的视觉模式.本文提出的CenterNet是一个单阶段的关键点检测模型.CenterNet通过检测每个目标物看作是一个三个关键点,而不是一对关键点,这样做同时提高了准确率及召回…
论文源址:https://arxiv.org/abs/1612.03144 代码:https://github.com/jwyang/fpn.pytorch 摘要 特征金字塔是用于不同尺寸目标检测中的基本组件.但由于金字塔表征的特征需要消耗较多的内存及计算资源,因此,深度学习尽量避免使用金字塔特征.本文利用深度卷积网络中自带的多尺寸信息构建特征金字塔.本文搭建了具有横向连接的自上而下的结构FPN,从而在所有尺寸上构建高层次的语义特征.本文在Faster R-CNN的基础结构上增加了FPN结构,并…
论文链接:https://arxiv.org/abs/1711.06897 代码链接:https://github.com/sfzhang15/RefineDet 摘要 RefineDet是CVPR 2018的一篇论文,文中提出了一个新的single-shot检测器RefineDet,实现了比二阶段方法更高的准确率而且具有与一阶段方法相当的效率.RefineDet包括两个互连模型ARM(anchor refinement module)和ODM(object detection module):…
题目:Deep Continuous Fusion for Multi-Sensor 3D Object Detection 来自:Uber: Ming Liang Note: 没有代码,主要看思想吧,毕竟是第一篇使用RGB feature maps 融合到BEV特征中: 从以下几个方面开始简述论文 Open Problems Contributions Methods Experiments My Conclusion 1> Open Problems 联合多传感器数据能获得更好的特征表示:…
论文题目:<Domain Adaptation via Transfer Component Analysis> 论文作者:Sinno Jialin Pan, Ivor W. Tsang, James T. Kwok and Qiang Yang 论文链接:https://www.cse.ust.hk/~qyang/Docs/2009/TCA.pdf 会议期刊:IJCAI 2009 / IEEE Transactions on Neural Networks 2010 简介 领域自适应(Dom…
论文源址:https://arxiv.org/abs/1506.01497 tensorflow代码:https://github.com/endernewton/tf-faster-rcnn 室友对Faster R-CNN的解读:https://www.cnblogs.com/pursuiting/ 摘要 目标检测依赖于区域proposals算法对目标的位置进行预测.SPPnet和Fast R-CNN已经减少了检测网络的运行时间.然而proposals的计算仍是一个重要的瓶颈.本文提出了一个R…
尊重原创,转载请注明:http://blog.csdn.net/tangwei2014 这是继RCNN,fast-RCNN 和 faster-RCNN之后,rbg(Ross Girshick)大神挂名的又一大作,起了一个很娱乐化的名字:YOLO.  虽然目前版本还有一些硬伤,但是解决了目前基于DL检测中一个大痛点,就是速度问题.  其增强版本GPU中能跑45fps,简化版本155fps. 论文下载:http://arxiv.org/abs/1506.02640  代码下载:https://git…
From Facial Parts Responses to Face Detection: A Deep Learning Approach ICCV 2015 从以上两张图就可以感受到本文所提方法的强大效果.Ok,那么我们不禁想问: 怎么做的?…
R-CNN总结 不总结就没有积累 R-CNN的全称是 Regions with CNN features.它的主要基础是经典的AlexNet,使用AlexNet来提取每个region特征,而不再是传统的SIFT.SURF的特征.同时,还利用了AlexNet本来的功能:分类,这时所得的分类结果相当于预分类.最后,由于每个Region是有边界的,使用SVM对其进行分类得到一个score,定位每个物体的bounding box. 预处理: 先看一看AlexNet的网络结构 可以看到,它的输入图像是一个…
论文地址:http://openaccess.thecvf.com/content_ICCV_2019/papers/Zhao_EGNet_Edge_Guidance_Network_for_Salient_Object_Detection_ICCV_2019_paper.pdf 当前方法的问题 全卷积网络解决了像素标记问题,出现了几种用于显着物体检测的端到端深度架构. 输出显着性图的基本单位从图像区域开始变成每个像素. 一方面,由于每个像素都有其显着性值,结果突出显示了细节. 但是,它忽略了对…
论文标题:SSD: Single Shot MultiBox Detector 论文作者:Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu,Alexander C. Berg 论文地址:https://arxiv.org/abs/1512.02325 SSD 的GitHub地址:https://github.com/balancap/SSD-Tensorflow 参考的S…
原论文标题:Acquisition of Localization Confidence for Accurate Object Detection 1. 前言 Megvii在ECCV 2018上的一篇oral,思路非常清奇,提出了Localization Confidence(定位置信度)这一概念,直接学习预测框与gt框的IoU,用于取代nms中的score.同时,提出了一个基于优化的bbox refinement方法.这些创新可以轻易地嵌入到现有的目标检测系统中.个人感觉,目标检测这一研究方…
目录 0. 前言 1. 博客一 2.. 博客二 0. 前言   这篇论文提出了一种新的特征融合方式来解决多尺度问题, 感觉挺有创新性的, 如果需要与其他网络进行拼接,还是需要再回到原文看一下细节.这里转了两篇比较好的博客作为备忘. 1. 博客一 这篇论文是CVPR2017年的文章,采用特征金字塔做目标检测,有许多亮点,特来分享. 论文:feature pyramid networks for object detection 论文链接:https://arxiv.org/abs/1612.031…
论文源址:https://arxiv.org/abs/1512.02325 tensorflow代码:https://github.com/balancap/SSD-Tensorflow 摘要 SSD也为单阶段的网络,在feature map的每个feature map像素上生成一系列不同尺寸与大小的默认框,预测时,网络输出的分数代表每个默认框中目标物的类别,同时,调整框的大小与目标物的外形更加匹配.针对不同尺寸大小的物体,网络结合不同的网络层(具有不同的分辨率)的预测值.相对于提取目标prop…
转载自:https://zhuanlan.zhihu.com/p/33544892 前言 目标检测近年来已经取得了很重要的进展,主流的算法主要分为两个类型(参考RefineDet):(1)two-stage方法,如R-CNN系算法,其主要思路是先通过启发式方法(selective search)或者CNN网络(RPN)产生一系列稀疏的候选框,然后对这些候选框进行分类与回归,two-stage方法的优势是准确度高:(2)one-stage方法,如Yolo和SSD,其主要思路是均匀地在图片的不同位置…
论文链接: https://arxiv.org/pdf/1512.02325.pdf 代码下载: https://github.com/weiliu89/caffe/tree/ssd Abstract We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of boun…
Perceptual Losses for Real-Time Style Transfer and Super-Resolution and Super-Resolution 论文笔记 ECCV 2016 摘要: 许多经典问题可以看做是 图像转换问题(image transformation tasks).本文所提出的方法来解决的图像转换问题,是以监督训练的方式,训练一个前向传播的网络,利用的就是图像像素级之间的误差.这种方法在测试的时候非常有效,因为仅仅需要一次前向传播即可.但是,像素级的误…
这几天读了SSD论文的原理部分,看了别人的翻译,发现很多应该都是google直接翻译过来的,有些地方读的不是很通顺,自己就在自己的理解和搜索的基础上对我看的那篇翻译做了一些修改.[原文地址:http://noahsnail.com/2017/12/11/2017-12-11-Single%20Shot%20MultiBox%20Detector%E8%AE%BA%E6%96%87%E7%BF%BB%E8%AF%91%E2%80%94%E2%80%94%E4%B8%AD%E8%8B%B1%E6%9…
Pan He_ICCV2017_Single Shot Text Detector With Regional Attention 作者和代码 caffe代码 关键词 文字检测.多方向.SSD.$$xywh\theta$$ .one-stage.开源 方法亮点 Attention机制强化文字特征: Text Attentional Module 引入Inception来增强detector对文字大小的鲁棒性:Hierarchical Inception Module(HIM) 方法概述 本文方法…
论文: Multi-Fidelity Automatic Hyper-Parameter Tuning via Transfer Series Expansion 我们都知道实现AutoML的基本思路是不断选取不同的超参数组成一个网络结构,然后使用这个网络结构在整个数据集上进行评估 (假设评估值为\(f_H(X)=\mathcal{L}(δ,D^{train},D^{valid})\),X表示某一组超参数) ,最后选择出评估性能最好的网络参数. 但是基于full dataset进行评估cost太…
SSD:Single Shot MultiBox Detector Intro SSD是一套one-stage算法实现目标检测的框架,速度很快,在当时速度超过了yolo,精度也可以达到two-stage的精度,可以与faster rcnn媲美,这套算法里用到了与faster rcnn的anchor相似的概念-default box,也解决了多尺度问题对one-stage的影响-对不同大小的feature map进行滑窗分类,使得不同尺度的feature map的分类器对原图目标尺度更加敏感. o…
转自http://lib.csdn.net/article/deeplearning/53059 作者:Ai_Smith 本文翻译而来,如有侵权,请联系博主删除.未经博主允许,请勿转载.每晚泡脚,闲来无事,所以就边泡边翻译了SSD论文,总感觉英文看着不习惯,还是中文好理解,也是和大家一起学习.菜鸟水平有限,恳求大家指出错误之处.本翻译仅作交流之用,请勿用于其他. SSD: Single Shot MultiBoxDetector Wei Liu1 , Dragomir Anguelov2 ,Du…
下文图文介绍转自watersink的博文SSD(Single Shot MultiBox Detector)不得不说的那些事. 该方法出自2016年的一篇ECCV的oral paper,SSD: Single Shot MultiBoxDetector,算是一个革命性的方法了,非常值得学习和研究. 论文解析: SSD的特殊之处主要体现在以下3点: (1)多尺度的特征图检测(Multi-scale),如SSD同时使用了上图所示的8*8的特征图和4*4特征图. (2)相比于YOLO,作者使用的是卷积…
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做是一个 黑匣子,只是用来提取特征,而是在大量的图像和 ImageNet 分类任务上关于 CNN 的 feature 做了大量的深度的研究.这些发现促使他们设计了该跟踪系统,他们发现: 不同的卷积层会从不同的角度来刻画目标.顶层的 layer 编码了更多的关于 语义特征并且可以作为种类检测器,而底层的…
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢.…
By Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg. Introduction SSD is an unified framework for object detection with a single network. You can use the code to train/evaluate a network for o…
SSD,全称Single Shot MultiBox Detector,是Wei Liu在ECCV 2016上提出的一种目标检测算法,截至目前是主要的检测框架之一,相比Faster RCNN有明显的速度优势,相比YOLO又有明显的mAP优势(不过已经被CVPR 2017的YOLO9000超越) 在VOC2007上,SSD300比Faster R-CNN的mAP高了6.6倍 在VOC2007上,SSD300比YOLP的FPS高了10%倍 1.SSD网络结构 SSD网络最前边使用了VGG16的前5个…