.NET 7 中的限流】的更多相关文章

老板提出了一个新需求,从某某天起,免费用户每天只能查询100次,收费用户100W次. 这是一个限流问题,聪明的你也一定想到了如何去做:记录用户每一天的查询次数,然后根据当前用户的类型使用不同的数字做比较,超过指定的数字就返回错误. 嗯,原理就是这么简单.不过真正写起来还要考虑更多问题: 统计数据的数据结构是什么样的?字典 or 行记录? 统计数据记录到哪里?内存 or MySQL or Redis? 分布式应用怎么精确计数?分布式锁 or 队列 or 事务? 吞吐量比较大时如何扛得住?内存 or…
算法原理 固定窗口算法又称计数器算法,是一种简单的限流算法.在单位时间内设定一个阈值和一个计数值,每收到一个请求则计数值加一,如果计数值超过阈值则触发限流,如果达不到则请求正常处理,进入下一个单位时间后,计数值清零,重新累计. 如上图所示,时间单位是1秒,阈值是3. 第1秒3个请求,不会触发限流: 第2秒1个请求,不会触发限流: 第3秒4个请求,这一秒的前3个请求正常处理,第4个请求触发限流,会被拒绝处理. 后续第4秒.第5秒不会触发限流,所有请求正常处理. 算法实现 这里讲两种实现方法:进程内…
*:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !important; } /* BLOCKS =============================================================================*/ p, blockquote, ul, ol, dl, table, pre { margin: 15px 0; } /* HEAD…
高并发系统下, 有三把利器 缓存 降级 限流. 缓存: 将常用数据缓存起来, 减少数据库或者磁盘IO 降级: 保护核心系统, 降低非核心业务请求响应 限流: 在某一个时间窗口内对请求进行限速, 保护系统 本文主要介绍限流, 常见限流算法中又分为计数器算法, 漏桶算法, 令牌桶算法. 计数器算法 比较简单, 直接用一个map + counter即可实现. 请求来了, 以IP为key, 查询下之前响应次数, 如果调用次数超出MAX_COUT, 返回失败, 属于简单粗暴型选手. 漏桶算法 请求全部进入…
在高并发的应用中,限流往往是一个绕不开的话题.本文详细探讨在Spring Cloud中如何实现限流. 在 Zuul 上实现限流是个不错的选择,只需要编写一个过滤器就可以了,关键在于如何实现限流的算法.常见的限流算法有漏桶算法以及令牌桶算法.这个可参考 https://www.cnblogs.com/LBSer/p/4083131.html ,写得通俗易懂,你值得拥有,我就不拽文了. GoogleGuava 为我们提供了限流工具类 RateLimiter ,于是乎,我们可以撸代码了. 简单示例 @…
AspNetCoreRateLimit介绍: AspNetCoreRateLimit是ASP.NET核心速率限制框架,能够对WebApi,Mvc中控制限流,AspNetCoreRateLimit包包含IpRateLimit中间件和ClientRateLimit中间件,每个中间件都可以为不同的场景设置多个限,该框架的作者是stefanprodan,项目nuget地址是https://github.com/stefanprodan/AspNetCoreRateLimit. 对客户端IP限流控制. 首…
转自:https://blog.csdn.net/tracy38/article/details/78685707 在高并发的应用中,限流往往是一个绕不开的话题.本文详细探讨在Spring Cloud中如何实现限流. 在Zuul 上实现限流是个不错的选择,只需要编写一个过滤器就可以了,关键在于如何实现限流的算法.常见的限流算法有漏桶算法以及令牌桶算法.这个可参考 https://www.cnblogs.com/LBSer/p/4083131.html ,写得通俗易懂,你值得拥有,我就不拽文了.…
目录 引入依赖 配置信息 RateLimit源码简单分析 RateLimit详细的配置信息解读 在平常项目中为了防止一些没有token访问的API被大量无限的调用,需要对一些服务进行API限流.就好比拿一些注册或者发验证码的一些接口,如果被恶意无限的调用,多少会造成一些费用的产生,发短信或者邮件都是一些第三方接口,次数越多,当然费用也就越多了,严重的直接导致服务崩溃.spring cloud api-gateway中引入限流的配置还是必须的. 引入依赖 在pom文件中引入Zuul RateLim…
转自: http://blog.csdn.net/zl1zl2zl3/article/details/78683855 在高并发的应用中,限流往往是一个绕不开的话题.本文详细探讨在Spring Cloud中如何实现限流. 在 Zuul 上实现限流是个不错的选择,只需要编写一个过滤器就可以了,关键在于如何实现限流的算法.常见的限流算法有漏桶算法以及令牌桶算法.这个可参考 https://www.cnblogs.com/LBSer/p/4083131.html ,写得通俗易懂,你值得拥有,我就不拽文…
前言 文章标题一開始提及到了一个令人感到有些抽象又显得有些非常"大"的词,限流.事实上这个词语在非常多行业都能够用到,比方近期春运,各大主要城市,火车站,地铁站都要做到限流吧,避免人流量过大造成事故或间接事故,这叫人流量限流,同理也能够用在车流量上.假设基于这个背景,把这里的人群和车辆抽象为数据,对数据进行限流,就是本篇文章的主题了.可能就有人疑惑了,数据为什么要做限流,怎么做限流,有什么优点呢,带着这个疑问,细致的阅读下文的分析吧. 数据的限流 数据的限流更让人理解的称呼应该是&qu…