poj3696:同余方程,欧拉定理】的更多相关文章

感觉很不错的数学题,可惜又是看了题解才做出来的 题目大意:给定一个数n,找到8888....(x个8)这样的数中,满足能整除n的最小的x,若永远无法整除n 则输出0 做了这个题和后面的poj3358给我的感觉是这种复杂的数学题一定要哦上手去写,光想永远是想不出来的= = 做法: 基于欧拉定理:若gcd(a,m)=1 ,则满足 a^φ(m)  mod m=1, 即   a-1=k*m 88888(x个8)可以表示为 (10^x-1)/9*8,整除n 于是可以设 (10^x-1)/9*8=n*k ,…
昨天终于把欧拉定理的证明看明白了...于是兴冲冲地写了2道题,发现自己啥都不会qwq 题意:给定一个正整数L<=2E+9,求至少多少个8连在一起组成正整数是L的倍数. 这很有意思么... 首先,连续的8可表示为:8*(10^x-1)/9; 那么就是L|8*(10^x-1)*9 => 9*L|8*(10^x-1) ,求最小的x: 我们设d=gcd(L,8) 则9*L/d | 8/d*(10^x-1),因为此时9*L/d 和 8/d 互质,所以9*L/d | 10^x-1,所以 10^x ≡ 1…
题意: 求最小T,满足L的倍数且都由8组成,求长度: 思路: 很强势的福利:点 图片拿出去食用更优 //#include<bits/stdc++.h> #include<cstdio> #include<math.h> #include<string.h> #include<algorithm> using namespace std; typedef long long LL; LL eluer(LL n) { LL res=n,a=n; fo…
什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSGS算法中是要求a^m在%c条件下的逆元的,如果a.c不互质根本就没有逆元.) 如果x有解,那么0<=x<C,为什么? 我们可以回忆一下欧拉定理: 对于c是素数的情况,φ(c)=c-1 那么既然我们知道a^0=1,a^φ(c)=1(在%c的条件下).那么0~φ(c)必定是一个循环节(不一定是最小的)…
又是一道用欧拉定理解的题..嗯,关键还是要建好方程,注意一些化简技巧 题目大意: 给定一个由 p / q 生成的循环小数,求此循环小数在二进制表示下的最小循环节以及不是循环节的前缀 思路: 小数化为二进制,应该乘2取余, 设从小数的第x位开始有长度为y的循环节, 先把 p/q 化为最简分数,此时p,q互质 则应该满足 同余方程 p*2^x=p*2^(x+y) mod q 整理一下可得  q | p*2^x*(2^y - 1) 由于 p,q互质,则q | 2^x*(2^y - 1) 此时 由于 2…
高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. 给定\(a,b,p\),其中\(gcd(a,p)=1\),求方程\(a^x \equiv b(mod\ p)\)的最小非负整数解. 普通分析和朴素算法 先介绍一下欧拉定理: 如果正整数\(a\),\(p\)互质,则\(a^{\phi(p)}\equiv1(mod\ p)\). 注意到题中所给的条件…
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p2^{a2}p3^{a3}...pn^{an},b=p1^{b1}p2^{b2}p3^{b3}...pn^{bn}\),那么\(gcd(a,b)=\prod_{i=1}^{n}pi^{min(ai,bi)},lcm(a,b)=\prod_{i=1}^{n}pi^{max(ai,bi)}\)(0和任何…
一.题目 Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own lucky number L. Now he wants to construct his luckiest number which is the minimum among all positive integers that are a multiple of L and consi…
http://cogs.pro/cogs/problem/problem.php?pid=1265 ★☆   输入文件:mod.in   输出文件:mod.out   简单对比时间限制:1 s   内存限制:128 MB [题目描述] 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. [输入格式] 输入只有一行,包含两个正整数 a, b,用一个空格隔开. [输出格式] 输出只有一行,包含一个正整数X0,即最小正整数解.输入数据保证一定有解. [样例输入] 3 10 [样例输出…
第一篇\(Blog\)... 还是决定把\(luogu\)上的那篇搬过来了. BSGS,又名北上广深 它可以用来求\(a^x \equiv b (mod \ n)\)这个同余方程的一个解,其中\(a,n\)互质. 欧拉定理告诉我们,这里\(a^{\varphi(n)} \equiv 1 (mod \ n)\) 由于\(a^0 \equiv 1 (mod \ n)\),所以这里\(x\)到\(\varphi(n)\)后\(a^x \ mod \ n\)就开始循环了. 所以我们最坏情况就是\(n\)…