DARTS: Differentiable Architecture Search 2019-03-19 10:04:26accepted by ICLR 2019 Paper:https://arxiv.org/pdf/1806.09055.pdf Code:https://github.com/quark0/darts 1. Motivation and Background:  前人的网络搜索方法,要么是基于 RL 的,要么是基于进化算法的,都是非常耗时的,最近的几个算法表示他们的计算时间…
Summary 我的理解就是原本节点和节点之间操作是离散的,因为就是从若干个操作中选择某一个,而作者试图使用softmax和relaxation(松弛化)将操作连续化,所以模型结构搜索的任务就转变成了对连续变量\(α={α^{(i,j)}}\)以及\(w\)的学习.(这里\(α\)可以理解成the encoding of the architecture). 之后就是迭代计算\(w\)和\(α\),这是一个双优化问题,具体处理细节参见3.Approximation Research Object…
摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上取得最大的准确率. 在 CIFAR-10数据集上,基于本文提出的方法生成的模型在测试集上得到结果优于目前人类设计的所有模型.测试集误差率为3.65%,比之前使用相似结构的最先进的模型结构还有低0.09%,速度快1.05倍. 在 Penn Treebank数据集上,根据本文算法得到的模型能够生成一个新…
Progressive Differentiable Architecture Search:Bridging the Depth Gap between Search and Evaluation 2019-04-30 11:46:21 Paper:https://arxiv.org/pdf/1904.12760.pdf Code:https://github.com/chenxin061/pdarts 本文是 DARTS 的改善,关于 DARTS 的细节,可以参考其原文(代码,博文). 本文…
论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesian Optimization evolutionary algorithm  注:本文主要是结合自己理解对原文献的总结翻译,有的部分直接翻译成英文不太好理解,所以查阅原文会更直观更好理解. 本文主要就Search Space.Search Strategy.Performance Estimatio…
P-DARTS 2019-ICCV-Progressive Differentiable Architecture Search Bridging the Depth Gap Between Search and Evaluation Tongji University && Huawei GitHub: 200+ stars Citation:49 Motivation Question: DARTS has to search the architecture in a shallow…
Dunhui Yu, Jian Wang, Bo Hu, Jianxiao Liu, Xiuwei Zhang, Keqing He, and Liang-Jie Zhang. 2011. A Practical Architecture of Cloudification of Legacy Applications. In Proceedings of the 2011 IEEE World Congress on Services (SERVICES '11). IEEE Computer…
Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS算法都侧重于搜索cell的结构,即当搜索得到一种cell结构后只是简单地将固定数量的cell按链式结构连接起来组成最终的网络模型.AutoDeeplab则将如何cell的连接方式也纳入了搜索空间中,进一步扩大了网络结构的范围. dense image prediction 之前的大多数NAS算法都是…
[论文笔记系列]AutoML:A Survey of State-of-the-art (上) 上一篇文章介绍了Data preparation,Feature Engineering,Model Selection,这篇文章会继续介绍后面的内容. 4. Model Generation 4.2 Hyperparameters optimization 4.2.1 Grid&Random Search 下图很直观地展示了网格搜索(grid search)和随机搜索(random search)的…
Research Guide for Neural Architecture Search 2019-09-19 09:29:04 This blog is from: https://heartbeat.fritz.ai/research-guide-for-neural-architecture-search-b250c5b1b2e5 From training to experimenting with different parameters, the process of design…