spark生态圈简介】的更多相关文章

原文引自:http://www.cnblogs.com/shishanyuan/p/4700615.html 1.简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处,Spark以其先进的设计理念,迅速成为社区的热门项目,围绕着Spark推出了Spark SQL.Sp…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .简介 1.1 Spark简介 年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处,Spark以其先进的设计理念,迅速成为社区的热门项目,围绕着Spark推出了Spark SQL.Spark Streaming.MLLib和GraphX等组件,也就是BDAS(伯克利数据分析栈),这些组件逐渐形成大数据处理一站式解决平台.从各方面报道来看Spark抱负并非池鱼,…
Spark:快速的通用的分布式计算框架 概述和特点: 1) Speed,(开发和执行)速度快.基于内存的计算:DAG(有向无环图)的计算引擎:基于线程模型: 2)Easy of use,易用 . 多语言(Java,python,scala,R); 多种计算API可调用:可在交互式模式下运行: 3)Generality  通用.可以一站式解决多个不同场景的应用业务 Spark Streaming :用来做流处理 MLlib : 用于机器学习 GraphX:用来做图形计算的 4) Runs Ever…
简介: SparkStreaming是一套框架. SparkStreaming是Spark核心API的一个扩展,可以实现高吞吐量的,具备容错机制的实时流数据处理. 支持多种数据源获取数据: Spark Streaming接收Kafka.Flume.HDFS等各种来源的实时输入数据,进行处理后,处理结构保存在HDFS.DataBase等各种地方. Dashboards:图形监控界面,Spark Streaming可以输出到前端的监控页面上. *使用的最多的是kafka+Spark Streamin…
1.hadoop,spark,Flink的比较 MapReduce: 分布式的计算框架 -> Hive 问题: shuffle:大文件的排序+读写磁盘+网络传输 => 比较慢 只有两种执行算子/API: MapTask(数据转换+过滤)和ReduceTask(数据聚合) ==> 定制化稍微有点差 不适合迭代式的计算 对于需要快速执行的产生结果的应用场景不适合 Spark:为了解决MapReduce执行慢.不适合迭代执行的问题 Flink:类似于spark的基于内存的计算框架  Hadoo…
1.Spark Core: 类似MapReduce 核心:RDD 2.Spark SQL: 类似Hive,支持SQL 3.Spark Streaming:类似Storm =================== Spark Core ======================= 一.什么是Spark? 1.什么是Spark?生态体系结构 Apache Spark™ is a fast and general engine for large-scale data processing. 生态圈:…
在一个application内部,不同线程提交的Job默认按照FIFO顺序来执行,假设线程1先提交了一个job1,线程2后提交了一个job2,那么默认情况下,job2必须等待job1执行完毕后才能执行,如果job1是一个长作业,而job2是一个短作业,那么这对于提交job2的那个线程的用户来说很不友好:我这个job是一个短作业,怎么执行了这么长时间. 使用spark的公平调度算法可以在一定程度上解决这个问题,此时,job2不必等待job1完全运行完毕之后就可以获得集群资源来执行,最终的效果的就是…
原文地址:http://blog.jobbole.com/?p=89446 我是在2013年底第一次听说Spark,当时我对Scala很感兴趣,而Spark就是使用Scala编写的.一段时间之后,我做了一个有趣的数据科学项目,它试着去 预测在泰坦尼克号上幸存.对于进一步了解Spark内容和编程来说,这被证明是一个很好的方式.对于任何有追求的.正在思考如何着手的Spark开发人员,我都非常推荐这个项目. 今天,Spark已经被很多巨头使用,包括Amazon.eBay以及Yahoo!.很多组织都在拥…
RDD工作原理: 主要分为三部分:创建RDD对象,DAG调度器创建执行计划,Task调度器分配任务并调度Worker开始运行. SparkContext(RDD相关操作)→通过(提交作业)→(遍历RDD拆分stage→生成作业)DAGScheduler→通过(提交任务集)→任务调度管理(TaskScheduler)→通过(按照资源获取任务)→任务调度管理(TaskSetManager) 举例:以下面一个按 A-Z 首字母分类,查找相同首字母下不同姓名总个数的例子来看一下 RDD 是如何运行起来的…
Hortworks 作为Apache Hadoop2.0社区的开拓者,构建了一套自己的Hadoop生态圈,包括存储数据的HDFS,资源管理框架YARN,计算模型MAPREDUCE.TEZ等,服务于数据平台的PIG.HIVE&HCATALOG.HBASE,HDFS存储的数据通过FLUME和SQOOP导入导出,集群监控AMBARI.数据生命周期管理FALCON.作业调度系统OOZIE.本文简要介绍了各个系统的概念.另外大多系统都通过Apache开源,读者可以自行下载试用. Hortworks Had…