由于编辑器总是崩溃,我只能直接把代码贴上了. import numpy #first step import pandas as pd import numpy as np # Read data from files #这三行的目的就是读入文件,pd.read_csv()这个API里面参数还是比较多的,可以查阅官方文档 #人工标记过的训练数据 train = pd.read_csv( "data/labeledTrainData.tsv", header=0, delimiter=&…
0. 前言 1.任务描述 2.数据概览 3. 数据准备 4. 模型训练 5. kaggle实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手头 90% 的机器学习问题." 本系列参考书籍 "Hands-on machine learning with scikit-learn and tensorflow"以及kaggle相关资料 1.任务描述 预测任务:根据某时刻房价相关数据,预测区域内该时刻任一街区的平均房价,决定是否对投资该街区的房子.…
0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手头 90% 的机器学习问题." 本系列参考书 "Hands-on machine learning with scikit-learn and tensorflow"以及kaggle相关资料 1. MNIST 数据集 MNIST是最常用的用来实验分类模型的数据集,有7w多张手写0…
本篇博客是基于以Kaggle中手写数字识别实战为目标,以KNN算法学习为驱动导向来进行讲解. 写这篇博客的原因 什么是KNN kaggle实战 优缺点及其优化方法 总结 参考文献 写这篇博客的原因 写下这篇博客,很大程度上是希望能记录和督促自己学习机器学习的过程,同时也在以后的学习生活中,可以将以前的博客翻来看看,重新回顾知识. 什么是KNN? 在模式识别和机器学习中,k-近邻算法(以下简称:KNN)是一种常用的监督学习中分类方法.KNN可以说是机器学习算法中最简单的一个算法,我希望它能带领大家…
Kaggle实战之二分类问题 0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 “尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手头 90% 的机器学习问题.” 本系列参考书 "Hands-on machine learning with scikit-learn and tensorflow"以及kaggle相关资料 1. MNIST 数据集 MNIST是最常用的用来实验分类模型的数据集,有7w…
https://mlnote.wordpress.com/2015/12/16/python%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%AE%9E%E8%B7%B5%E4%B8%8Ekaggle%E5%AE%9E%E6%88%98-machine-learning-for-kaggle-competition-in-python/ Author: Miao Fan (范淼), Ph.D. candidate on Computer Science. Affil…
https://blog.csdn.net/chengcheng1394/article/details/78940565 原创文章,转载请注明出处: http://blog.csdn.net/chengcheng1394/article/details/78940565 请安装TensorFlow1.0,Python3.5 项目地址: https://github.com/chengstone/kaggle_criteo_ctr_challenge- 前言点击率预估用来判断一条广告被用户点击的…
date:2016-09-13 今天开始注册了kaggle,从digit recognizer开始学习, 由于是第一个案例对于整个流程目前我还不够了解,首先了解大神是怎么运行怎么构思,然后模仿.这样的学习流程可能更加有效,目前看到排名靠前的是用TensorFlow.ps:TensorFlow是可以直接安linux环境下面,但是目前不能在windows环境里面运行(伤心一万点). TensorFlow模块用的是NN(神经网络),既然现在接触到可以用神经网络的例子我再也不好意思再逃避学习神经网络下面…
文章目录 加载package read data PCA 降维探索 选择50维度, 拆分数据为训练集,测试机 KNN PCA降维和K值筛选 分析k & 维度 vs 精度 预测 生成提交文件 本文采用PCA+KNN的方法进行kaggle手写数字识别,训练数据共有42000行,每行代表一幅数字图片,共有784列(一副数字图像是28*28像素,将一副图像展开为一行即784),更多关于Digit Recognizer项目的介绍https://www.kaggle.com/c/digit-recogniz…
原文:https://hippocampus-garden.com/kaggle_colab/ 原文标题:How to Kaggle with Colab Pro & Google Drive 译文作者:kbsc13 联系方式: Github:https://github.com/ccc013/AI_algorithm_notes 知乎专栏:机器学习与计算机视觉,AI 论文笔记 微信公众号:AI 算法笔记 前言 Colab Pro(目前仅在美国.加拿大.日本.巴西.德国.法国.印度.英国和泰国可…