打算整理一个关于Person Re-identification的系列论文笔记,主要记录近年CNN快速发展中的部分有亮点和借鉴意义的论文. 论文笔记流程采用contributions->algorithm pipeline>experiments->个人评价 Scalable Person Re-identification: A Benchmark Zheng L, Shen L, Tian L, et al. Scalable Person Re-identification: A…
SVDNet for Pedestrian Retrieval Sun Y, Zheng L, Deng W, et al. SVDNet for Pedestrian Retrieval[J]. 2017.a spotlight at ICCV 2017 这篇的出发点是全连接层的权值相关性分析,作者认为全连接层的作用可以看做一组向量投影.当权值直接相关性较高时(可以理解为权值冗余),特征差异小,直接导致检索中距离差异小,无法获取差异化的特征. 作者提出用SVD对降维层进行操作,提高权值矩阵的正…
A Discriminatively Learned CNN Embedding for Person Re-identification Zheng Z, Zheng L, Yang Y. A Discriminatively Learned CNN Embedding for Person Re-identification[J]. Acm Transactions on Multimedia Computing Communications & Applications, 2017, 14…
Improving Person Re-identification by Attribute and Identity Learning Lin Y, Zheng L, Zheng Z, et al. Improving Person Re-identification by Attribute and Identity Learning[J]. 2017. 这篇论文主要是将attribute learning和Person Re-id结合起来,做了一个多任务学习网络. 在这里顺介绍下机器学习…
Human Semantic Parsing for Person Re-identification Kalayeh M M, Basaran E, Gokmen M, et al. Human Semantic Parsing for Person Re-identification[J]. 2018. 这篇是截止发文时在Market-1501上性能最高的论文.主要思想可以归结到软划分的范畴, 借助精确分割的信息去提取部件特征,再辅以其他tricks(大规模的backbone,较大的网络输入…
AlignedReID Zhang X, Luo H, Fan X, et al. AlignedReID: Surpassing Human-Level Performance in Person Re-Identification[J]. 2017. 本篇是来自旷视的一篇论文,刚发出来时号称超越人类分辨能力. 看性能指标确实挺高,其主要亮点是利用行人局部区域之间的联系(头下面是肩部,肩部下面是躯干)对行人对象进行对齐,从而减少不对齐导致的局部距离过大. 然后添加了一堆的训练tricks(tr…
Beyond Part Models: Person Retrieval with Refined Part Pooling Sun Y, Zheng L, Yang Y, et al. Beyond Part Models: Person Retrieval with Refined Part Pooling[J]. 2017. 这篇是SVD-net作者的新作,也是我个人比较喜欢一篇. 主要内容是找到了一种既能精确划分部件信息而又不借助姿态估计的方法,提出了PCB+RPP的网络框架.PCB是硬…
Re-ID done right: towards good practices for person re-identification Almazan J, Gajic B, Murray N, et al. Re-ID done right: towards good practices for person re-identification[J]. 2018. 这篇总结了一套行之有效的Re-id训练策略和调参经验.创新点不多,但对工程有较好的借鉴意义. contributions 1.…
论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesian Optimization evolutionary algorithm  注:本文主要是结合自己理解对原文献的总结翻译,有的部分直接翻译成英文不太好理解,所以查阅原文会更直观更好理解. 本文主要就Search Space.Search Strategy.Performance Estimatio…
Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS算法都侧重于搜索cell的结构,即当搜索得到一种cell结构后只是简单地将固定数量的cell按链式结构连接起来组成最终的网络模型.AutoDeeplab则将如何cell的连接方式也纳入了搜索空间中,进一步扩大了网络结构的范围. dense image prediction 之前的大多数NAS算法都是…
[论文笔记系列]AutoML:A Survey of State-of-the-art (上) 上一篇文章介绍了Data preparation,Feature Engineering,Model Selection,这篇文章会继续介绍后面的内容. 4. Model Generation 4.2 Hyperparameters optimization 4.2.1 Grid&Random Search 下图很直观地展示了网格搜索(grid search)和随机搜索(random search)的…
好久没有写博客了,今天抽空继续写MEF系列的文章.有园友提出这种系列的文章要做个目录,看起来方便,所以就抽空做了一个,放到每篇文章的最后. 前面四篇讲了MEF的基础知识,学完了前四篇,MEF中比较常用的基本已经讲完了,相信大家已经能看出MEF所带来的便利了.今天就介绍一些MEF中一些较为不常用的东西,也就是大家口中的所谓的比较高级的用法. 前面讲的导出都是在每个类上面添加Export注解,实现导出的,那么有没有一种比较简便的方法呢?答案是有的,就是在接口上面写注解,这样只要实现了这个接口的类都会…
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正…
本系列文章由七十一雾央编写,转载请注明出处. http://blog.csdn.net/u011371356/article/details/9332377 作者:七十一雾央 新浪微博:http://weibo.com/1689160943/profile?rightmod=1&wvr=5&mod=personinfo 上一节笔记中,我们讲解了键盘响应和鼠标响应,实现了对于玩家的操作,程序做出正确的响应.但是大家在玩游戏的过程中,应该会注意到,在大家没有操作的时候,程序的画面仍然不是静止的…
看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图片中的物体.理解物体间的关系,并用一句自然语言表达出来. 应用场景:比如说用户在拍了一张照片后,利用Image Caption技术可以为其匹配合适的文字,方便以后检索或省去用户手动配字:此外它还可以帮助视觉障碍者去理解图像内容.类似的任务还有Video Caption,输入是一段视频,输出是对视频的…
论文笔记1:Deep Learning         2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature上发表深度学习的综述性论文,介绍了什么是监督学习.反向传播来训练多层神经网络.卷积神经网络.使用深度卷积网络进行图像理解.分布式特征表示与语言处理.递归神经网络,并对深度学习技术的未来发展进行展望. 原文摘要: 1,深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示.        …
一:原始信号 从音频文件中读取出来的原始语音信号通常称为raw waveform,是一个一维数组,长度是由音频长度和采样率决定,比如采样率Fs为16KHz,表示一秒钟内采样16000个点,这个时候如果音频长度是10秒,那么raw waveform中就有160000个值,值的大小通常表示的是振幅. 二:(线性)声谱图 (1)对原始信号进行分帧加窗后,可以得到很多帧,对每一帧做FFT(快速傅里叶变换),傅里叶变换的作用是把时域信号转为频域信号,把每一帧FFT后的频域信号(频谱图)在时间上堆叠起来就可…
Mastering the game of Go with deep neural networks and tree search Nature 2015  这是本人论文笔记系列第二篇 Nature 的文章了,第一篇是 DQN.好紧张!好兴奋! 本文可谓是在世界上赚够了吸引力! 围棋游戏被看做是 AI 领域最有挑战的经典游戏,由于其无穷的搜索空间 和 评价位置和移动的困难.本文提出了一种新的方法给计算机来玩围棋游戏,即:利用 "value network" 来评价广泛的位置 和 “p…
Go语言学习笔记五: 条件语句 if语句 if 布尔表达式 { /* 在布尔表达式为 true 时执行 */ } 竟然没有括号,和python很像.但是有大括号,与python又不一样. 例子: package main import "fmt" func main() { var a int = 1 if a < 2 { fmt.Printf("a < 2\n" ) } fmt.Printf("a = %d\n", a) } if.…
基于3D卷积神经网络的人体行为理解(论文笔记) zouxy09@qq.com http://blog.csdn.net/zouxy09 最近看Deep Learning的论文,看到这篇论文:3D Convolutional Neural Networks for Human Action Recognition.比较感兴趣是CNN是怎么应用于行为理解的,所以就看看.这篇论文发表在TPAMI2013.它基本上没有公式的,论文倾于从论述角度描述它的基本方法和实现效果.另外,对于怎么去训练也没有具体的…
论文笔记 <Maxout Networks> && <Network In Network> 发表于 2014-09-22   |   1条评论 出处 maxout:http://arxiv.org/pdf/1302.4389v4.pdfNIN:http://arxiv.org/abs/1312.4400 参考 maxout和NIN具体内容不作解释下,可以参考:Deep learning:四十五(maxout简单理解)Network In Network 各用一句话…
Deep Learning论文笔记之(三)单层非监督学习网络分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,…
知识点 mAP:detection quality. Abstract 本文提出一种基于快速区域的卷积网络方法(快速R-CNN)用于对象检测. 快速R-CNN采用多项创新技术来提高训练和测试速度,同时提高检测精度. 采用VGG16的网络:VGG: 16 layers of 3x3 convolution interleaved with max pooling + 3 fully-connected layers Introduction 物体检测相对于图像分类是更复杂的,应为需要物体准确的位置…
作者:仲夏夜之星 Date:2020-04-08 来源:物体的三维识别与6D位姿估计:PPF系列论文介绍(三) 文章“A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data” 2018年发表在<sensors>上,是近年来对PPF方法的进一步继承与改进. 1.本文的思路 本文介绍的方法主要分为两个阶段即线下建模与线上匹配,在建模时,通过计算和保存所有可能…
翻译的初衷以及为什么选择<Entity Framework 6 Recipes>来学习,请看本系列开篇 第五章 加载实体和导航属性 实体框架提供了非常棒的建模环境,它允许开发人员可视化地使用映射到数据库中的表.视图.存储过程以及关系中的实体类型.本节将向你展示如何控制查询操作中的关联实体的加载. 实体框架的默认行为是只加载应用程序直接需要的实体.通常情况下,这正是你需要的.如果实体框架通过一个或多个关联积极地加载关联实体,最终,你很有可能得到超过你需求的实体.这不但增加了内存占用,而且还影响了…
这是一个Maven提高篇的系列,包含有以下文章: Maven提高篇系列之(一)——多模块 vs 继承 Maven提高篇系列之(二)——配置Plugin到某个Phase(以Selenium集成测试为例) Maven提高篇系列之(三)——使用自己的Repository(Nexus) Maven提高篇系列之(四)——使用Profile Maven提高篇系列之(五)——处理依赖冲突 Maven提高篇系列之(六)——编写自己的Plugin(本系列完) 在本系列的上一篇文章中,我们讲到了如何使用Profil…
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做是一个 黑匣子,只是用来提取特征,而是在大量的图像和 ImageNet 分类任务上关于 CNN 的 feature 做了大量的深度的研究.这些发现促使他们设计了该跟踪系统,他们发现: 不同的卷积层会从不同的角度来刻画目标.顶层的 layer 编码了更多的关于 语义特征并且可以作为种类检测器,而底层的…
Qt Model/View 学习笔记 (五) View 类 概念 在model/view架构中,view从model中获得数据项然后显示给用户.数据显示的方式不必与model提供的表示方式相同,可以与底层存储数据项的数据结构完全不同. 内容与显式的分离是通过由QAbstractItemModel提供的标准模型接口,由QAsbstractItemview提供的标准视图接口共同实现的.普遍使用model index来表示数据项.view负责管理从model中读取的数据的外观布局. 它们自己可以去渲染…
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢.…
Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture Heron 架构例如以下图: 用户编写公布topoloy到Aurora调度器.每个topology都作为一个Aurora的job在执行.每个job包含几个container,这些container由Aurora来分配和调度.第一个container作为Topology Master.其它的Cont…