[1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数),当新的数据到来时,可以根据这个函数预测结果.监督学习的训练集要求包括输入输出,也可以说是特征和目标.训练集中的目标是由人标注的.常用于:训练神经网络.决策树.回归分析.统计分类 无监督学习:输入数据没有被标记,也没有确定的结果.样本数据类别未知,需要根据样本间的相似性对样本集进行分类,试图使类内差距最小化,…
强烈安利吴恩达老师的<Machine Learning>课程,讲得非常好懂,基本上算是无基础就可以学习的课程. 课程地址 强烈建议在线学习,而不是把视频下载下来看.视频中间可能会有一些问题让你回答,这种互动的方式挺好的. 然后由于我个人的笔记是做在Onenote的笔记本里的,公式输入方法和markdown还是蛮不一样的,就不把自己的笔记放在博客里了.(而且感觉自己在瞎做) 最后强烈安利另外一位朋友的笔记.有word版,markdown版,pdf版,html版等等,业界良心!…
1.Feature Normalization: 归一化的处理 function [X_norm, mu, sigma] = featureNormalize(X) %FEATURENORMALIZE Normalizes the features in X % FEATURENORMALIZE(X) returns a normalized version of X where % the mean value of each feature is 0 and the standard dev…
1.warmUpExercise: function A = warmUpExercise() %WARMUPEXERCISE Example function in octave % A = WARMUPEXERCISE() is an example function that returns the 5x5 identity matrix A = []; % ============= YOUR CODE HERE ============== % Instructions: Return…
1. Sigmoid function function g = sigmoid(z) %SIGMOID Compute sigmoid function % g = SIGMOID(z) computes the sigmoid of z. % You need to return the following variables correctly g = zeros(size(z)); % ====================== YOUR CODE HERE =============…
Week1: Machine Learning: A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. Supervised Learning:We alr…
Week 1: Machine Learning: A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. Supervised Learning:We al…
主要内容: 一.Batch gradient descent 二.Stochastic gradient descent 三.Mini-batch gradient descent 四.Online learning 五.Map-reduce and data parallelism 一.Batch gradient descent batch gradient descent即在损失函数对θ求偏导时,用上了所有的训练集数据(假设有m个数据,且m不太大).这种梯度下降方法也是我们之前一直使用的.…
一.随机梯度下降算法 之前了解的梯度下降是指批量梯度下降:如果我们一定需要一个大规模的训练集,我们可以尝试使用随机梯度下降法(SGD)来代替批量梯度下降法. 在随机梯度下降法中,我们定义代价函数为一个单一训练实例的代价: 随机梯度下降算法为:首先对训练集随机“洗牌”,然后: 下面是随机梯度下降算法的过程以及和批量梯度下降算法的异同: 随机梯度下降算法是先只对第1个训练样本计算一小步的梯度下降,即这个过程包括调参过程,然后转向第2个训练样本,对第2个训练样本计算一小步的梯度下降,这个过程也包括调参…
Deap Learning(Ng) 学习笔记 author: 相忠良(Zhong-Liang Xiang) start from: Sep. 8st, 2017 1 深度学习概论 打字太麻烦了,索性在吴老师的 text note 上直接标注,写出自己的总结和心得. 每一节,我都会用数字标出核心内容,数字序号有时候表达前后知识的连贯性,有时候仅仅表达孤立的知识点. 加油了,相!…