matlab 直方图均衡化(含rgb)】的更多相关文章

步骤: 统计原图像素每个像素的个数 统计原图像<每个灰度级的像素的累积个数 家里灰度级得映射规则 将原图每个像素点的灰度映射到新图 代码: clear all I=imread('1.jpg');                 %读入JPG彩色图像文件 imshow(I)                                  %显示出来 title('输入的彩色JPG图像') I_gray = rgb2gray(I); %灰度化后的数据存入数组 imwrite(I_gray,'1_…
原理: 直方图均衡化首先是一种灰度级变换的方法: 原来的灰度范围[r0,rk]变换到[s0,sk]变换函数为:s=T(r); 为便于实现,可以用查找表(look-up table)的方式存储,即:原始的灰度作为查找表的索引,表中的内容是新的灰度值. 其次,直方图均衡化是图像增强的一种基本方法,可提高图像的对比度,即:将较窄的图像灰度范围以一定规则拉伸至较大(整个灰度级范围内)的范围. 目的是在得到在整个灰度级范围内具有均匀分布的图像. 所以,当输入:直方图H(r)[此处指每个灰度级占有的像素数]…
彩色图像的直方图均衡化 - YangYudong2014的专栏 - CSDN博客 http://blog.csdn.net/yangyudong2014/article/details/40515035 matlab进阶摸索篇——彩色图直方图均衡化 - Rachel Zhang的专栏 - CSDN博客 http://blog.csdn.net/abcjennifer/article/details/6667504 用matlab_实现基于直方图均衡化的彩色图像增强 - 成人教育 - 道客巴巴 h…
昨天说了,今天要好好的来解释说明一下直方图均衡化.并且通过不调用histeq函数来实现直方图的均衡化. 一.直方图均衡化概述 直方图均衡化(Histogram Equalization) 又称直方图平坦化,实质上是对图像进行非线性拉伸,重新分配图像象元值,使一定灰度范围内象元值的数量大致相等.这样,原来直方图中间的峰顶部分对比度得到增强,而两侧的谷底部分对比度降低,输出图像的直方图是一个较平的分段直方图:如果输出数据分段值较小的话,会产生粗略分类的视觉效果.[1] 根据香农定理关于信息熵的定义:…
今天,我们学习了直方图.于是乎,回来我就用matlab代码实现一下.昨天受到道路检测老师课上一个内容的影响(对于道路裂缝的检测,我突发奇想,如果对于道路图像进行操作,是否能够让裂缝与道路分离,使得图像经过预处理以后在检测过程中能更加直观),于是所用图片是与道路裂缝有关的.(但是发现效果似乎很shi...) 结合上节课的图像点运算.今天的代码都将会囊括进来! 点运算,是用于改变图像灰度范围以及分布的一种运算,原图像与生成图像之间相应的像素值之间满足某种函数关系.可以是线性变换的,也可以是非线性变换…
G=imread('aini555.jpg'); I=rgb2gray(G); J=histeq(I); %直方图均衡化,这一个函数就可以做到均衡化的效果 figure, subplot(),imshow(uint8(I)); title('原图') subplot(),imshow(uint8(J)); title('均衡化后') figure, subplot(),imhist(I,); title('原图像直方图'); subplot(),imhist(J,); title('均衡化后的直…
目录 1.直方图均衡化 2.直方图规定化 @ 1.直方图均衡化 对图像进行非线性拉伸,重新分配图像像元值,使一定灰度范围内像元值的数量大致相等就是直方图的均衡化.原来直方图中间的峰顶部分对比度得到增强,而两侧的谷底部分对比度降低,输出图像的直方图是一个较平的分段直方图:如果输出数据分段值较小,会产生粗略的分类的视觉效果. 在MATLAB中,histeq函数用于直方图的均衡化. 实现代码如下 clear close all clc I=imread('peppers.png'); subplot(…
直方图均衡化的作用是图像增强. 有两个问题比较难懂,一是为什么要选用累积分布函数,二是为什么使用累积分布函数处理后像素值会均匀分布. 第一个问题.均衡化过程中,必须要保证两个条件:①像素无论怎么映射,一定要保证原来的大小关系不变,较亮的区域,依旧是较亮的,较暗依旧暗,只是对比度增大,绝对不能明暗颠倒:②如果是八位图像,那么像素映射函数的值域应在0和255之间的,不能越界.综合以上两个条件,累积分布函数是个好的选择,因为累积分布函数是单调增函数(控制大小关系),并且值域是0到1(控制越界问题),所…
直方图均衡化(HE)是一种很常用的直方图类方法,基本思想是通过图像的灰度分布直方图确定一条映射曲线,用来对图像进行灰度变换,以达到提高图像 对比度的目的.该映射曲线其实就是图像的累计分布直方图(CDF)(严格来说是呈正比例关系).然而HE是对图像全局进行调整的方法,不能有效地提高局部 对比度,而且某些场合效果会非常差.如: 上述原图和HE结果图的直方图分别为: 因为从原图的直方图中求取的映射函数(CDF)形状为: 将它作用于原图像会导致直方图被整体右移,没有充分利用整个灰度动态范围. 为了提高图…
我们来看一个灰度图像,让表示灰度出现的次数,这样图像中灰度为 的像素的出现概率是  是图像中全部的灰度数, 是图像中全部的像素数,  实际上是图像的直方图,归一化到 . 把  作为相应于  的累计概率函数, 定义为:  是图像的累计归一化直方图. 我们创建一个形式为  的变化,对于原始图像中的每一个值它就产生一个 ,这样  的累计概率函数就能够在全部值范围内进行线性化,转换公式定义为: 注意 T 将不同的等级映射到  域.为了将这些值映射回它们最初的域,须要在结果上应用以下的简单变换: 上面描写…