关联分析 是无监督讯息算法中的一种,Apriori主要用来做_关联分析_,_关联分析_可以有两种形式:频繁项集或者关联规则.举个例子:交易订单 序号 商品名称 1 书籍,电脑 2 杯子,手机,手机壳,盘子 3 古筝,手机,手机壳,玻璃 4 手机,玻璃 5 电视,手机,手机壳 频繁项集:{ 古筝,手机,手机壳,玻璃}就是一个例子. 关联规则:手机->手机壳,买手机很大概率会买手机壳. 关联分析使用的思路 无论是频繁项集还是关联规则,都是需要看发生的频率,比如有手机就有手机壳的概率,如果这个比率超过…
书接上文(使用Apriori进行关联分析(一)),介绍如何挖掘关联规则. 发现关联规则 我们的目标是通过频繁项集挖掘到隐藏的关联规则. 所谓关联规则,指通过某个元素集推导出另一个元素集.比如有一个频繁项集{底板,胶皮,胶水},那么一个可能的关联规则是{底板,胶皮}→{胶水},即如果客户购买了底板和胶皮,则该客户有较大概率购买胶水.这个频繁项集可以推导出6个关联规则: {底板,胶水}→{胶皮}, {底板,胶皮}→{胶水}, {胶皮,胶水}→{底板}, {底板}→{胶水, 胶皮}, {胶水}→{底板…
本文仅对常见的无监督学习算法进行了简单讲述,其他的如自动编码器,受限玻尔兹曼机用于无监督学习,神经网络用于无监督学习等未包括.同时虽然整体上分为了聚类和降维两大类,但实际上这两类并非完全正交,很多地方可以相互转化,还有一些变种的算法既有聚类功能又有降维功能,一些新出现的和尚在开发创造中的无监督学习算法正在打破聚类和降维的类别划分.另外因时间原因,可能有个别小错误,如有发现还望指出. 一.聚类(clustering) 1.k-均值聚类(k-means) 这是机器学习领域除了线性回归最简单的算法了.…
大型超市有海量交易数据,我们可以通过聚类算法寻找购买相似物品的人群,从而为特定人群提供更具个性化的服务.但是对于超市来讲,更有价值的是如何找出商品的隐藏关联,从而打包促销,以增加营业收入.其中最经典的案例就是关于尿不湿和啤酒的故事.怎样在繁杂的数据中寻找到数据之间的隐藏关系?当然可以使用穷举法,但代价高昂,所以需要使用更加智能的方法在合理时间内找到答案.Apriori就是其中的一种关联分析算法. 基本概念 关联分析是一种在大规模数据集中寻找有趣关系的非监督学习算法.这些关系可以有两种形式:频繁项…
主要机器学习算法的project适用性分析 前段时间AlphaGo跟李世石的大战及相关的深度学习的新闻刷了一遍又一遍的朋友圈.只是这件事情,也仅仅是在机器学习的深度上进一步拓展,而机器学习的广度(也即project化实践)上,仍然没有什么突破性的理论或实践,用的领域继续用,不用的领域依旧不用. project性分析的作用 project上的琐事 机器学习的使命是使计算机强大的运算能力和存储能力转化为推演能力.能转化是一方面.转化的效率则是还有一方面.科研性质的AlphaGo,拥有近乎无限的计算资…
如果要对硬币进行分类,我们对硬币根据不同的尺寸重量来告诉机器它是多少面值的硬币 这种对应的机器学习即使监督学习,那么如果我们不告诉机器这是多少面额的硬币,只有尺寸和重量,这时候让机器进行分类,希望机器对不同种类的硬币分类,这种机器学习方式就是无监督学习.可以从下图看出,监督学习,根据颜色(面值)可以得出不同种类,而无监督学习也可根据所样例在的不同区域对样例进行分类. 根据聚类分组clustering: {xn} -> cluster(x) 根据密度分组density estimation{Xn}…
关联分析又称关联挖掘,就是在交易数据.关系数据或其他信息载体中,查找存在于项目集合或对象集合之间的频繁模式.关联.相关性或因果结构.关联分析的一个典型例子是购物篮分析.通过发现顾客放入购物篮中不同商品之间的联系,分析顾客的购买习惯.比如,67%的顾客在购买尿布的同时也会购买啤酒.通过了解哪些商品频繁地被顾客同时购买,可以帮助零售商制定营销策略.关联分析也可以应用于其他领域,如生物信息学.医疗诊断.网页挖掘和科学数据分析等. 1. 问题定义 图1 购物篮数据的二元表示 图1表示顾客的购物篮数据,其…
从宏观方面,机器学习可以从不同角度来分类 是否在人类的干预/监督下训练.(supervised,unsupervised,semisupervised 以及 Reinforcement Learning) 是否可以增量学习 (在线学习,批量学习) 是否是用新数据和已知数据比较,还是在训练数据中发现一些规律build出一个预测模型(instance-based ,model-based learning). 以上分类并非互相排斥.这一节我们介绍监督/无监督学习. Supervised/Unsupe…
1.有监督学习和无监督学习的区别: 1.1概述: 有监督学习是知道变量值(数据集)和结果(已知结果/函数值),但是不知道函数样式(函数表达式)的情况下通过machine learning(ML)获得正确的函数表达式(算法).也即 需要部分数据集已经有正确答案,才可以推算出正确的函数表达式.比如给定房价数据集, 对于里面每个数据,算法都知道对应的正确房价, 即这房子实际卖出的价格.机器学习通过一定的分析,找到数据集与结果集之间存在的关系(算法).找到正确的算法之后,你就可以应用该算法来计算出更多的…
附注:不要问我为什么写这么快,是16年写的. 一.分析目的 I用户在某电商平台买了A,那么平台接下来应该给用户推荐什么,即用户在买了商品A之后接下来买什么的倾向性最大: II应该把哪些商品在一起做捆绑销售. 二.理论介绍 数据挖掘中的经典算法之一:关联分析.关联分析内部理论又分为apriori , eclat , FP-Growth.这里采用apriori.关于他们的优缺点,适应条件什么的,只能等我看完理论再写了. 三.R包介绍 介绍将要用到的两个软件包:arules和arulesViz. ar…
无监督学习定义: [无监督学习]中没有任何的标签或者是有相同的标签或者就是没标签.所以我们已知数据集,却不知如何处理,也未告知每个数据点是什么.别的都不知道,就是一个数据集.你能从数据中找到某种结构吗? 针对数据集,无监督学习就能判断出数据有两个不同的聚集簇.这是一个类,那是另一个类,二者不同.是的,无监督学习算法可能会把这些数据分成两个不同的簇.所以叫做[聚类算法clustering algorithm] 聚类只是无监督学习的一种 聚类应用: 谷歌新闻:把不同新闻分成不同类别 基因分类:输入一…
无监督学习(Unsupervised Learning) 聚类无监督学习 特点 只给出了样本, 但是没有提供标签 通过无监督学习算法给出的样本分成几个族(cluster), 分出来的类别不是我们自己规定的, 而是无监督学习算法自己计算出来的 K-means 聚类算法 规定 \(c^{(i)}\): 表示\(x^{(i)}\)属于哪个cluster, 如\(x^{(1)}\)属于\(c^{(1)}\)簇, 如果\(c^{(1)}=1\), 则\(x^{(1)}\)划分在第1个类别 \(\mu_k\…
监督学习算法需要标记的样本(x,y),但是无监督学习算法只需要input(x). 您将了解聚类 - 用于市场分割,文本摘要,以及许多其他应用程序. Principal Components Analysis, 经常用于加快学习算法,同时对于数据可视化以帮助你对数据的理解也有很大的帮助. Unsupervised learning Introduction supervised learning:在前面几课我们学习的都是属于监督性学习的内容,包括回归和分类,主要特点就是我们使用的数据集都是类似(x…
转载 http://daniellaah.github.io/2016/Machine-Learning-Andrew-Ng-My-Notes-Week-1-Introduction.html 一. 监督学习 什么是监督学习? 我们来看看维基百科中给出的定义: 监督式学习(英语:Supervised learning),是一个机器学习中的方法,可以由训练资料中学到或建立一个模式(函数 / learning model),并依此模式推测新的实例.训练资料是由输入物件(通常是向量)和预期输出所组成.…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第11章 - 使用Apriori算法进行关联分析. 基本概念 关联分析(association analysis)或者关联规则学习(association rule learning) 这是非监督学习的一个特定的目标:发现数据的关联(association)关系.简单的说,就是那些数据(或者数据特征)会一起出现. 关联分析的目标包括两项:发现频繁项集和发现关联规则.首先需要找到频繁项集,然后才能…
系列文章:<机器学习实战>学习笔记 最近看了<机器学习实战>中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集).正如章节标题所示,这两章讲了无监督机器学习方法中的关联分析问题.关联分析可以用于回答"哪些商品经常被同时购买?"之类的问题.书中举了一些关联分析的例子: 通过查看哪些商品经常在一起购买,可以帮助商店了解用户的购买行为.这种从数据海洋中抽取的知识可以用于商品定价.市场促销.存活管理等环节. 在美国…
1. 关联分析是什么? Apriori和FP-growth算法是一种关联算法,属于无监督算法的一种,它们可以自动从数据中挖掘出潜在的关联关系.例如经典的啤酒与尿布的故事.下面我们用一个例子来切入本文对关联关系以及关联分析的讨论. 0x1:一个购物篮交易的例子 许多商业企业在日复一日的运营中积聚了大量的交易数据.例如,超市的收银台每天都收集大量的顾客购物数据. 例如,下表给出了一个这种数据集的例子,我们通常称其为购物篮交易(market basket transaction).表中每一行对应一个交…
前言 想必大家都听过数据挖掘领域那个经典的故事 - "啤酒与尿布" 的故事. 那么,具体是怎么从海量销售信息中挖掘出啤酒和尿布之间的关系呢? 这就是关联分析所要完成的任务了. 本文将讲解关联分析领域中最为经典的Apriori算法,并给出具体的代码实现. 关联分析领域的一些概念 1. 频繁项集: 数据集中经常出现在一起的物品的集合.例如 "啤酒和尿布" 2. 关联规则: 指两个物品集之间可能存在很强的关系.例如 "{啤酒} -> {尿布}"…
概念 关联分析:从大规模数据集中寻找物品间的隐含关系.物品间关系又分为两种:频繁项集或关联规则,频繁项集是经常出现一块的物品集合:关联规则则暗示物品间存在很强的联系 关联评判标准:支持度和可信度.支持度是指数据集中包含该项集的记录所占比例,是针对项集而言:可信度(置信度)是针对一条关联规则定义的,规则A->B的可信度定义为支持度(A|B)/ 支持度(A) apriori原理:若某项集是频繁的,那他的子集也是频繁的 apriori算法目的:找到强关联规则,即满足最小支持度和最小置信度的关联规则 思…
第 11 章 使用 Apriori 算法进行关联分析 关联分析 关联分析是一种在大规模数据集中寻找有趣关系的任务. 这些关系可以有两种形式: 频繁项集(frequent item sets): 经常出现在一块的物品的集合. 关联规则(associational rules): 暗示两种物品之间可能存在很强的关系. 相关术语 关联分析(关联规则学习): 从大规模数据集中寻找物品间的隐含关系被称作 关联分析(associati analysis) 或者 关联规则学习(association rule…
机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析 关键字:Apriori.关联规则挖掘.频繁项集作者:米仓山下时间:2018-11-2机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharri…
从大规模的数据集中寻找隐含关系被称作为关联分析(association analysis)或者关联规则学习(association rule learning). Apriori算法 优点:易编码实现 缺点:在大数据集上可能较慢 使用数据类型:数值型或者标称型数据 关联分析寻找的是隐含关系,这些关系可以有两种形式:频繁项集或者关联规则. 频繁项集(frequent item sets)是经常出现在一起的集合 关联规则(association rule)暗示两种物品之间可能存在很强的关系 项集的支…
•1.关联分析概念 关联分析是从大量数据中发现项集之间有趣的关联和相关联系. ​ •定义:1.事务:每一条交易称为一个事务,如上图包含5个事务.2.项:交易的每一个物品称为一个项,例如豆奶,啤酒等. 3.项集:包含零个或多个项的集合叫做项集,例如{尿布,啤酒}.4.k−项集:包含k个项的项集叫做k-项集,例如 {豆奶,橙汁}叫做2-项集.5.支持度计数:一个项集出现在几个事务当中,它的支持度计数就是几.例如{尿布, 啤酒}出现在事务002.003和005中,所以           它的支持度计…
前言 想必大家都听过数据挖掘领域那个经典的故事 - "啤酒与尿布" 的故事. 那么,具体是怎么从海量销售信息中挖掘出啤酒和尿布之间的关系呢? 这就是关联分析所要完成的任务了. 本文将讲解关联分析领域中最为经典的Apriori算法,并给出具体的代码实现. 关联分析领域的一些概念 1. 频繁项集: 数据集中经常出现在一起的物品的集合.例如 "啤酒和尿布" 2. 关联规则: 指两个物品集之间可能存在很强的关系.例如 "{啤酒} -> {尿布}"…
关联分析是一种在大规模数据集中寻找有趣关系的任务.这些关系可以有两种形式:频繁项集或者关联规则.频繁项集是指经常出现在一块的物品的集合,关联规则暗示两种物品之间可能存在很强的关系.一个项集的支持度被定义为数据集中包含该项集的记录所占的比例.可信度或置信度是针对一条诸如{尿布}->{葡萄酒}的关联规则来定义的.这条规则的可信度被定义为"支持度({尿布->啤酒})/支持度({尿布})" 尽管大部分关联规则分析的实例来自零售业,但该技术同样可以用于其他行业,比如网站流量分析以及医…
在美国有这样一家奇怪的超市,它将啤酒与尿布这样两个奇怪的东西放在一起进行销售,并且最终让啤酒与尿布这两个看起来没有关联的东西的销量双双增加.这家超市的名字叫做沃尔玛. 你会不会觉得有些不可思议?虽然事后证明这个案例确实有根据,美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒.但这毕竟是事后分析,我们更应该关注的,是在这样的场景下,如何找出物品之间的关联规则.接下来就来介绍下如何使用Apriori算法,来找到物品之间的关联规则吧. 一. 关联分析概述 选…
上一篇我们讲了关联分析的几个概念,支持度,置信度,提升度.以及如何利用Apriori算法高效地根据物品的支持度找出所有物品的频繁项集. Python --深入浅出Apriori关联分析算法(一) 这次呢,我们会在上次的基础上,讲讲如何分析物品的关联规则得出关联结果,以及给出用apyori这个库运行得出关联结果的代码. 一. 基础知识 上次我们介绍了几个关联分析的概念,支持度,置信度,提升度.这次我们重点回顾一下置信度和提升度: 置信度(Confidence):置信度是指如果购买物品A,有较大可能…
设全集U = {a, b, c, d, e},其元素a,b, c, d, e称为项. 数据集: D = [ {a, b}, {b, c, d}, {d, e}, {b, c, e}, {a,b, c, d} ] 项的集合如{a,b}称为项集(cell), 包含k个项的集合称为k项集. 数据集D中包含项集A的集合占所有元素集的比例称为A的支持度(support).如{a}的支持度为2/5. 若项集满足人为设定的最小支持度,则称为频繁集. 频繁集的任意子集一定是频繁集, 非频繁集的超集一定为非频繁集…
两个概念: 频繁项集:常出现的物品集合 关联分析:找到诸如:尿布-->啤酒的关联,反过来则是另一条 两个控制参数: 项集的支持度(support):一个项集出现的次数在所有样本中出现的比例 可信度或置信度(confidence):定义为:支持度(尿布,啤酒)/支持度(尿布)…
关联分析是一种在大规模数据集中寻找有趣关系的任务,这些关系有两种形式:频繁项集和关联规则.频繁项集是经常出现在一起的物品的集合,关联规则暗示两种物品之间可能存在的很强的关系. 如何寻找数据集中的频繁或关联关系呢?主要是通过支持度和可信度. 一个项集的支持度被定义为数据集中包含该项集的记录所占的比例. 可信度是针对关联规则来定义的,比如规则A->B的可信度为:支持度{A,B} / 支持度{A} 支持度和可信度是用来量化关联分析是否成功的方法. Apriori原理: 要计算某个项集在数据集的支持度,…