Python之岭回归】的更多相关文章

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from sklearn.model_selection import train_test_split def load_data(): diabetes = datasets.load_diabetes() return train_test_split(diabetes.data,diabetes.tar…
实现:# -*- coding: UTF-8 -*- import numpy as npfrom sklearn.linear_model import Ridge __author__ = 'zhen' X = 2 * np.random.rand(100, 1)y = 4 + 3 * X + np.random.randn(100, 1)# 岭回归ridge_reg = Ridge(alpha=1, solver='sag')ridge_reg.fit(X, y)print("="…
注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念,经过一番苦思冥想后终于有了我自己的理解. 0. 正则化(Regularization ) 前面使用多项式回归,如果多项式最高次项比较大,模型就容易出现过拟合.正则化是一种常见的防止过拟合的方法,一般原理是在代价函数后面加上一个对参数的约束项,这个约束项被叫做正则化项(regularizer).在线…
机器学习-正则化(岭回归.lasso)和前向逐步回归 本文代码均来自于<机器学习实战> 这三种要处理的是同样的问题,也就是数据的特征数量大于样本数量的情况.这个时候会出现矩阵不可逆的情况,为什么呢? 矩阵可逆的条件是:1. 方阵 2. 满秩 X.t*X必然是方阵(nxmxmxn=nxn,最终行列数是原来的X矩阵的列数,也就是特征数),但是要满秩的话,由于线性代数的一个结论,X.t*X的秩不会比X大,而X的秩是样本数和特征数中较小的那一个,所以,如果样本数小于特征数的话,X.t*X就不会是可逆的…
机器学习之五 正则化的线性回归-岭回归与Lasso回归 注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念,经过一番苦思冥想后终于有了我自己的理解. 0. 正则化(Regularization ) 前面使用多项式回归,如果多项式最高次项比较大,模型就容易出现过拟合.正则化是一种常见的防止过拟合的方法,一般原理是在代价函数后面加上一个对参数的约束项,…
[占位-未完成]scikit-learn一般实例之十:核岭回归和SVR的比较…
      多元线性回归模型 的最小二乘估计结果为 如果存在较强的共线性,即 中各列向量之间存在较强的相关性,会导致的从而引起对角线上的 值很大 并且不一样的样本也会导致参数估计值变化非常大.即参数估计量的方差也增大,对参数的估计会不准确. 因此,是否可以删除掉一些相关性较强的变量呢?如果p个变量之间具有较强的相关性,那么又应当删除哪几个是比较好的呢? 本文介绍两种方法能够判断如何对具有多重共线性的模型进行变量剔除.即岭回归和LASSO(注:LASSO是在岭回归的基础上发展的)     思想:…
Ridge Regression岭回归 数值计算方法的"稳定性"是指在计算过程中舍入误差是可以控制的. 对于有些矩阵,矩阵中某个元素的一个很小的变动,会引起最后计算结果误差很大,这种矩阵称为"病态矩阵".有些时候不正确的计算方法也会使一个正常的矩阵在运算中表现出病态.对于高斯消去法来说,如果主元(即对角线上的元素)上的元素很小,在计算时就会表现出病态的特征. 回归分析中常用的最小二乘法是一种无偏估计. 当X列满秩时,有 X+表示X的广义逆(或叫伪逆). 当X不是列满…
为了解决数据的特征比样本点还多的情况,统计学家引入了岭回归. 岭回归通过施加一个惩罚系数的大小解决了一些普通最小二乘的问题.回归系数最大限度地减少了一个惩罚的误差平方和. 这里是一个复杂的参数,用来控制收缩量,其值越大,就有更大的收缩量,从而成为更强大的线性系数. Ridge和Line_Model一样,用fit(x,y)来训练模型,回归系数保存在coef_成员中 例子: 在这个例子使用岭回归作为估计器.结果中的每个颜色表示的系数向量的一个不同的功能,这是显示作为正则化参数的函数.在路径的最后,作…
岭回归技术的原理和应用 作者马文敏 岭回归分析是一种专用于共线性分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息,降低精度为代价获得回归系数更为符合实际,更可靠的回归方法,对病态数据的耐受性远远强于最小二乘法. 回归分析:他是确立两种或两种以上变量间相互依赖的定量关系的一种统计分析法.运用十分广泛,回归分析按照设计量的多少,分为一元回归和多元回归分析,按照因变量的多少,可分为简单回归分析和多重回归分析,按照自变量和因变量的多少类型可分为线性回归…