从Excel到Python 数据分析进阶指南】的更多相关文章

Excel是数据分析中最常用的工具,本书通过Python与Excel的功能对比介绍如何使用Python通过函数式编程完成Excel中的数据处理及分析工作.在Python中pandas库用于数据处理,我们从1787页的pandas官网文档中总结出最常用的36个函数,通过这些函数介绍如何通过Python完成数据生成和导入.数据清洗.预处理,以及最常见的数据分类,数据筛选,分类汇总,透视等最常见的操作. 学习推荐: <从Excel到Python数据分析进阶指南>高清中文版PDF,带目录,文字可以复制…
目 录   第1章 生成数据表 第2章 数据表检查 第3章 数据表清洗 第4章 数据预处理 第5章 数据提取 第6章 数据筛选 第7章 数据汇总 第8章 数据统计 第9章 数据输出 案例 990万次骑行:纽约自行车共享系统分析  百度网盘下载 链接:https://pan.baidu.com/s/1xaO3K4yplTLMXy6Hb9sVEw 提取码:gxx4  …
Python 现如今已成为数据分析和数据科学使用上的标准语言和标准平台之一.那么作为一个新手小白,该如何快速入门 Python 数据分析呢? 下面根据数据分析的一般工作流程,梳理了相关知识技能以及学习指南. 数据分析一般工作流程如下: 数据采集 数据存储与提取 数据清洁及预处理 数据建模与分析 数据可视化 1.数据采集 数据来源分为内部数据和外部数据,内部数据主要是企业数据库里的数据,外部数据主要是下载一些公开数据取或利用网络爬虫获取.(如果数据分析仅对内部数据做处理,那么这个步骤可以忽略.)…
本文涉及pandas最常用的36个函数,通过这些函数介绍如何完成数据生成和导入.数据清洗.预处理,以及最常见的数据分类,数据筛选,分类汇总,透视等最常见的操作. 生成数据表 常见的生成数据表的方法有两种,第一种是导入外部数据,第二 种是直接写入数据.Excel中的"文件"菜单中提供了获取外部数据的功能,支持数据库和文本文件和页面的多种数据源导入. Python支持从多种类型的数据导入.在开始使用Python进行数据 导入前需要先导入pandas库,为了方便起见,我们也同时导入numpy…
继上一篇[Python数据分析]Python3操作Excel-以豆瓣图书Top250为例 对豆瓣图书Top250进行爬取以后,鉴于还有一些问题没有解决,所以进行了进一步的交流讨论,这期间得到了一只尼玛的帮助与启发,十分感谢! 上次存在的问题如下: 1.写入不能继续的问题 2.在Python IDLE中明明输出正确的结果,写到excel中就乱码了. 上述两个问题促使我改换excel处理模块,因为据说xlwt只支持到Excel 2003,很有可能会出问题. 虽然“一只尼玛”给了一个Validate函…
基于上两篇文章的工作 [Python数据分析]Python3操作Excel-以豆瓣图书Top250为例 [Python数据分析]Python3操作Excel(二) 一些问题的解决与优化 已经正确地实现豆瓣图书Top250的抓取工作,并存入excel中,但是很不幸,由于采用的串行爬取方式,每次爬完250页都需要花费7到8分钟,显然让人受不了,所以必须在效率上有所提升才行. 仔细想想就可以发现,其实爬10页(每页25本),这10页爬的先后关系是无所谓的,因为写入的时候没有依赖关系,各写各的,所以用串…
[读书笔记与思考]<python数据分析与挖掘实战>-张良均 最近看一些机器学习相关书籍,主要是为了拓宽视野.在阅读这本书前最吸引我的地方是实战篇,我通读全书后给我印象最深的还是实战篇.基础篇我也看了,但发现有不少理论还是讲得不够透彻,个人还是比较倾向于 <Machine Learning>--Tom M.Mitchell,Andrew 的 machine learning 课程,或周华志的<机器学习>,Jiawei Han 的 <data mining>.…
Python面向对象编程指南(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1SbD4gum4yGcUruH9icTPCQ 提取码:fzk5 复制这段内容后打开百度网盘手机App,操作更方便哦 内容简介  · · · · · · Python是一种面向对象.解释型的程序设计语言,它已经被成功应用于科学计算.数据分析以及游戏开发等诸多领域. 本书深入介绍Python语言的面向对象特性,全书分3个部分共18章.第1部分讲述用特殊方法实现Python风格的类,分别介绍…
Python数据分析基础(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1ImzS7Sy8TLlTshxcB8RhdA 提取码:6xeu 复制这段内容后打开百度网盘手机App,操作更方便哦 内容简介  · · · · · · 想深入应用手中的数据?还是想在上千份文件上重复同样的分析过程?没有编程经验的非程序员们如何能在最短的时间内学会用当今炙手可热的Python语言进行数据分析? 来自Facebook的数据专家Clinton Brownley可以帮您解决上述问题…
<Python数据分析与挖掘实战>的数据和代码,可从“泰迪杯”竞赛网站(http://www.tipdm.org/tj/661.jhtml)下载获得 1.Python数据结构 2.Numpy数组 import numpy as np #一般以np作为numpy的别名 a = np.array([2, 0, 1, 5]) #创建数组 print(a) #输出数组 print(a[:3]) #引用前三个数字(切片) print(a.min()) #输出a的最小值 a.sort() #将a的元素从小…