mnist测试】的更多相关文章

通过从零到一的教程,我们已经得到了通过mnist训练集生成的caffemodel,主要包含下面四个文件: 接下来就可以利用模型进行测试了.关于测试方法按照上篇教程还是选择bat文件,当然python.matlab更为方便,比如可以迅速把识别错误的图片显示出来. 一.均值文件mean.binaryproto 在进行分类之前首先需要产生所有图片的平均值图片,真正分类时的每个图片都会先减去这张平均值图片再进行分类.这样的处理方式能够提升分类的准确率. 产生均值文件的方法是利用解决方案中的compute…
caffe安装 安装内容:win10教育版+anaconda2+python(无gpu版本) 安装教程:主要依照三年一梦教程:https://www.cnblogs.com/king-lps/p/6553378.html(感谢) 安装包链接:(由于到处寻找极慢,故放置如下) anaconda2-4.2.0-×64: https://pan.baidu.com/s/1RPKlr0ZtPL2m7v2TPN_GDw 提取码:arwg cuda_8.0.44_win10: https://pan.bai…
从一到二:利用mnist训练集生成的caffemodel对mnist测试集与自己手写的数字进行测试 通过从零到一的教程,我们已经得到了通过mnist训练集生成的caffemodel,主要包含下面四个文件: 接下来就可以利用模型进行测试了.关于测试方法按照上篇教程还是选择bat文件,当然python.matlab更为方便,比如可以迅速把识别错误的图片显示出来. 一.均值文件mean.binaryproto 在进行分类之前首先需要产生所有图片的平均值图片,真正分类时的每个图片都会先减去这张平均值图片…
第一步:进入caffe目录 第二步:获取mnist数据集 ./data/mnist/get_mnist.sh 第三步:创建lmdb ./examples/mnist/create_mnist.sh 第四步:训练 ./examples/mnist/train_lenet.sh 运行完结果如下: 生成四个文件 lenet_iter_10000.caffemodel lenet_iter_10000.solverstate       lenet_iter_5000.caffemodel      …
一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试样本集.mnist数据库官方网址为:http://yann.lecun.com/exdb/mnist/ .可直接下载四个解压文件,分别对应:训练集样本.训练集标签.测试集样本和测试集标签.解压缩之后发现,其是在一个文件中包含了所有图像. 二.caffe支持的数据格式:Lmdb和Leveldb 它们都…
1. MNIST数据集介绍 MNIST是一个手写数字数据库,样本收集的是美国中学生手写样本,比较符合实际情况,大体上样本是这样的: MNIST数据库有以下特性: 包含了60000个训练样本集和10000个测试样本集: 分4部分,分别是一个训练图片集,一个训练标签集,一个测试图片集,一个测试标签集,每个标签的值是0~9之间的数字: 原始图像归一化大小为28*28,以二进制形式保存 2.  Windows+caffe框架下MNIST数据集caffemodel分类模型训练及测试 1. 下载mnist数…
先从一个具体的例子来开始Caffe,以MNIST手写数据为例. 1.下载数据 下载mnist到caffe-master\data\mnist文件夹. THE MNIST DATABASE:Yann LeCun et al. train-images-idx3-ubyte.gz:  training set images (9912422 bytes)  train-labels-idx1-ubyte.gz:  training set labels (28881 bytes)  t10k-ima…
在硕士第二年,义无反顾地投身到了深度学习的浪潮中.从之前的惯性导航转到这个方向,一切从头开始,在此,仅以此文记录自己的打怪之路. 最初的想法是动手熟悉Caffe,考虑到直接上手Ubuntu会有些难度,所以首先在windows环境下打个基础.有个插曲,台式机由于某些原因只能保持在32位系统,编译caffe.cpp时才发现系统不兼容,然后才换到64位的笔记本上进行操作. 前期准备:1.VS 2013   2. windows版的Caffe(https://github.com/BVLC/caffe/…
前面两篇随笔实现的单层神经网络 和多层神经网络, 在MNIST测试集上的正确率分别约为90%和96%.在换用多层神经网络后,正确率已有很大的提升.这次将采用卷积神经网络继续进行测试. 1.模型基本结构 如下图所示,本次采用的模型共有8层(包含dropout层).其中卷积层和池化层各有两层. 在整个模型中,输入层负责数据输入:卷积层负责提取图片的特征:池化层采用最大池化的方式,突出主要特征,并减少参数维度:全连接层再将个特征组合起来:dropout层可以减少每次训练的计算量,并可以一定程度上避免过…
Ubuntu16.04下配置caffe(仅CPU)  参考:http://blog.csdn.net/zt_1995/article/details/56283249   第二次配置caffe环境,依旧把之前犯过的错误重新走了一遍,不会配置的地方还是忘了,所以打算通过博客记录下来,方便以后学习使用. 1.安装依赖包 $ sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-s…
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例代码: import tensorflow as tf l1 = tf.matmul(x, w1) l2 = tf.matmul(l1, w2) y = tf.matmul(l2,w3) 1.2,激活层:引入激活函数,让每一层去线性化 激活函数有多种,例如常用的 tf.nn.relu  tf.nn.…
最近在看<TensorFlow 实战Google深度学习框架第二版>这本书,测试LeNet-5这个模型时遇到了TypeError: Failed to convert object of type <class 'list'> to Tensor的报错,由于书作者没有给出测试的代码,所以根据前面第五章给出的mnist测试代码修改了测试的代码.至于报错的原因尚且不是很清楚,不过找到了解决方法.只要设置好输入数据X的每个维度大小就可以了.比如 x = tf.placeholder(tf…
mxnet底层的代码是cpp写的, 然后在它上面封装提供了R, python, scala和matlab的接口. 我现在只关注python. 如何使用mxnet的python接口? 自然是通过import来实现了. import mxnet as mx 但是import之前必须先把mxnet/python路径加到search path里. 至少有三种方式可以实现. python代码手动加载 import os, sys; cur_path = os.path.abspath(os.path.di…
目录 摘要 引言 1.BinaryNet 符号函数 梯度计算和累积 通过离散化传播梯度 一些有用的成分 算法1 使用BinaryNet训练DNN 算法2 批量标准化转换(Ioffe和Szegedy,2015),适用于小批量激活x. 算法3 ADAM学习规则(Kingma&Ba,2014). 2.基准测试结果 MLP on MNIST ConvNet on CIFAR-10 ConvNet on SVHN 3.在运行时更快 第一层 4.相关工作 结论 参考资料 论文地址:https://arxiv…
翻译自Build a Convolutional Neural Network using Estimators TensorFlow的layer模块提供了一个轻松构建神经网络的高端API,它提供了创建稠密(全连接)层和卷积层,添加激活函数,应用dropout regularization的方法.本教程将介绍如何使用layer来构建卷积神经网络来识别MNIST数据集中的手写数字. MNIST数据集由60,000训练样例和10,000测试样例组成,全部都是0-9的手写数字,每个样例由28x28大小…
如果你可视化CNN的各层级结构,你会发现里面的每一层神经元的激活态都对应了一种特定的信息,越是底层的,就越接近画面的纹理信息,如同物品的材质. 越是上层的,就越接近实际内容(能说出来是个什么东西的那些信息),如同物品的种类. 网络结构 卷积层->池化层->卷积层->池化层->全连接层->Softmax分类器 卷积层激活函数使用relu 卷积层relu激活,偏置项使用极小值初始化,防止Relu出现死亡节点 全连接层激活函数使用relu 池化层模式使用SAME,所以stride取…
参考 ubuntu16.04+gtx1060+cuda8.0+caffe安装.测试经历 ,细节处有差异. 首先说明,这是在台式机上的安装测试经历,首先安装的win10,然后安装ubuntu16.04双系统,显卡为GTX1060 台式机显示器接的是GTX1060 HDMI口,win10上首先安装了最新的GTX1060驱动375 废话不多说,上车吧,少年 一.首先安装nvidia显卡驱动 我是1080P的显示器,在没有安装显卡驱动前,ubuntu分辨率很低,可以手动修改一下grub文件,提高分辨率,…
Tensorflow高维向量可视化 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 强烈推荐Tensorflow实战Google深度学习框架 实验平台: Tensorflow1.4.0 python3.5.0 MNIST数据集将四个文件下载后放到当前目录下的MNIST_data文件夹下 高维向量表示 为了更加直观的了解embedding 向量的效果,TensorBoard 提供了PROJECTOR 界面来可视化高维向量之间的关系.PROJECTOR 界面可以非常方便地可视化多个…
来源于:https://tensorflow.google.cn/tutorials/estimators/cnn 强烈建议前往学习 tf.layers 模块提供一个可用于轻松构建神经网络的高级 API,还提供了一些有助于创建密集(全连接)层和卷积层.添加激活函数以及应用 dropout 正规化的方法.在本教程中,您将了解如何使用 layers 构建一个卷积神经网络模型来识别 MNIST 数据集中的手写数字. MNIST 数据集包含 60000 个训练样本和 10000 个测试样本,这些样本均为…
本文转载自:https://blog.csdn.net/u010925447/article/details/79754044 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u010925447/article/details/79754044 首先说明,这是在台式机上的安装测试经历,首先安装的win10,然后安装ubuntu16.04双系统,显卡为GTX1060 台式机显示器接的是GTX1060 HDMI口 一.首先安装nvidia显卡驱动…
注意:包含Python层的网络只支持单个GPU训练!!!!! Caffe 使得我们有了使用Python自定义层的能力,而不是通常的C++/CUDA.这是一个非常有用的特性,但它的文档记录不足,难以正确实现本演练将向您展示如何使用DIGHT来学习实现Python层. 注意:这个特性(自定义python层)在你是使用Cmake编译Caffe或者使用Deb 包来安装Caffe的时候自动被包含.如果你使用Make,你将需要将你的Makefile.config中的"WITH_PYTHON_LAYER :=…
基于OpenCL的深度学习工具:AMD MLP及其使用详解 http://www.csdn.net/article/2015-08-05/2825390 发表于2015-08-05 16:33| 5921次阅读| 来源CSDN| 2 条评论| 作者AMD中国异构计算部 深度学习异构计算异构编程MLPopencl 摘要:本文介绍AMD深度学习团队开发的MLP学习工具软件的使用,为深度学习研究人员和开发商提供一个高性能.高易用性的深度学习的软硬件平台方案.AMD-MLP基于OpenCL,支持不同类型…
无论是之前学习的MNIST数据集还是Cifar数据集,相比真实环境下的图像识别问题,有两个最大的问题,一是现实生活中的图片分辨率要远高于32*32,而且图像的分辨率也不会是固定的.二是现实生活中的物体类别很多,无论是10种还是100种都远远不够,而且一张图片中不会只出现一个种类的物体.为了更加贴近真实环境下的图像识别问题,由李飞飞教授带头整理的ImageNet很大程度上解决了这个问题. ImageNet是一个基于WordNet的大型图像数据库,在ImageNet中,将近1500万图片被关联到了W…
论文标题:Siamese Neural Networks for One-shot Image Recognition 论文作者: Gregory Koch   Richard Zemel Ruslan Salakhutdinov 论文地址:https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf 声明:小编翻译论文仅为学习,如有侵权请联系小编删除博文,谢谢! 小编是一个机器学习初学者,打算认真研究论文,但是英文水平有限,所以论文翻译中用到了Goo…
前文:三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署 TensorFlow 模型导出 使用 SavedModel 完整导出模型 不仅包含参数的权值,还包含计算的流程(即计算图) tf.saved_model.save(model, "保存的目标文件夹名称") 将模型导出为 SavedModel model = tf.saved_model.load("保存的目标文件夹名称") 载入 SavedModel 文件 因为 SavedModel…
下载链接以及说明:  1.caffe代码按照官方教程下载windows分支下面的就可以了(https://github.com/BVLC/caffe/tree/windows). 2.cmake(https://cmake.org/download/)  3.miniconda3  python3.6  x64(https://conda.io/miniconda.html) (注意:官方只能下载python 3.6版本的,在安装完python3.6版本的miniconda之后,注意在安装的时候…
<Explaining and harnessing adversarial examples> 论文学习报告 组员:裴建新   赖妍菱    周子玉 2020-03-27 1 背景 Szegedy有一个有趣的发现:有几种机器学习模型,包括最先进的神经网络,很容易遇到对抗性的例子.所谓的对抗性样例就是对数据集中的数据添加一个很小的扰动而形成的输入.在许多情况下,在训练数据的不同子集上训练不同体系结构的各种各样的模型错误地分类了相同的对抗性示例.这表明,对抗性例子暴露了我们训练算法中的基本盲点.…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! https://arxiv.org/abs/1312.6199v4 Abstract 深度神经网络是近年来在语音和视觉识别任务中取得最新性能的高度表达模型.虽然它们的表现力是它们成功的原因,但它也会使它们学习不可理解的解决方案,这些解决方案可能具有反直觉的特性.在本文中,我们介绍了两个这样的性质. 首先,根据不同的单元分析方法,我们发现单个高层单元和高层单元的随机线性组合之间没有区别.这表明,在神经网络的高层中,包含语义信息的是空间,…
出于实现目的,翻译原文(侵删) Published in: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI 2019) 源码地址:http://www.pami.sjtu.edu.cn/Show/56/115 目录: Abstract I. INTRODUCTION II. TYPE I ATTACK AND ITS RELATIONSHIP TO TYPE II A. Toy Example on Fe…
pytorch生成对抗示例 本文对ML(机器学习)模型的安全漏洞的认识,并将深入了解对抗性机器学习的热门话题.图像添加难以察觉的扰动会导致模型性能大不相同.通过图像分类器上的示例探讨该主题.使用第一种也是最流行的攻击方法之一,即快速梯度符号攻击算法(FGSM)来迷惑 MNIST 分类器. 1.威胁模型 对于上下文,有许多类别的对抗性攻击,每种攻击具有不同的目标和对攻击者知识的假设.总体目标是向输入数据添加最少量的扰动,引起期望的错误分类.对攻击者的知识有几种假设,其中两种是:白盒子和黑盒子.白盒…