Bellman-ford 模板】的更多相关文章

两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可以求得一点到任意一点经过一条边的最短路,遍历两次可以求得一点到任意一点经过两条边的最短路...如 此反复,当遍历m次所有边后,则可以求得一点到任意一点经过m条边后的最短路(有点类似离散数学中邻接矩阵的连通性判定) POJ1556-The Doors 初学就先看POJ2240吧 题意:求从(0,5)到…
Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 7990 Description Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and pe…
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能更新点的权值,则说明有负环的存在. #include <stdio.h> #include <string.h> #define min(a,b) (a)<(b)?(a):(b) const int N = 10005; const int INF = 0x3f3f3f3f; i…
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G运行Bellman—Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路.若存在负权回路,单源点最短路径问题无解:若不存在这样的回路,算法将给出从源点s到图G的任意顶点v的最短路径值d[v] Bellman—Ford算法流程 分为三个阶段:       (1)初始化:将除源点…
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力不从心了,而Bellman - Ford算法可以解决这种问题. Bellman - Ford 算法可以处理路径权值为负数时的单源最短路径问题.设想可以从图中找到一个环路且这个环路中所有路径的权值之和为负.那么通过这个环路,环路中任意两点的最短路径就可以无穷小下去.如果不处理这个负环路,程序就会永远运…
#include<iostream>#include<cstdio>#include<utility>#include<queue>#include<cstring>using namespace std;#define INF 1000000000int d[20005];int n,m,a,b,c;int u[200005];int v[200005];int l[200005];int nxt[200005]; // next[e] 记录e…
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, s…
Arbitrage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:27167   Accepted: 11440 Description Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currenc…
传送门:点击打开链接 题目大意:一个城市有n种货币,m个货币交换点,你有v的钱,每个交换点只能交换两种货币,(A换B或者B换A),每一次交换都有独特的汇率和手续费,问你存不存在一种换法使原来的钱更多. 思路:一开始以为一个地方只能用一次,感觉好像有点难,后来发现自己读错题了,其实只要判断给你的这幅图存不存在正环就可以了,用dis[]表示某种货币的数量,然后bellman判断正环就可以了.(题目里强调结尾一定要原来的货币,但其实这是废话,因为是以原来的货币为起点的,所以你换出去了一定换的回来),正…
这道题稍复杂一些,需要掌握字符串输入的处理+限制了可以行走的时间. ZOJ1791(POJ1613)-Cave Raider //限制行走时间的最短路 //POJ1613-ZOJ1791 //Time:16Ms Memory:324K #include<iostream> #include<cstring> #include<cstdio> #include<algorithm> using namespace std; #define MAX 505 #d…
Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 35103   Accepted: 12805 Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way p…
题目大意:原题链接 当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些.FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食.奶牛排在队伍中的顺序和它们的编号是相同的.因为奶牛相当苗条,所以可能有两头或者更多奶牛站在同一位置上(即间距可能为0).即是说,如果我们想象奶牛是站在一条数轴上的话,允许有两头或更多奶牛拥有相同的横坐标. 一些奶牛相互间存有好感,它们希望两者之间的距离不超过一个给定的数L.另一方面,一些奶牛相互间非常反感,它们希望两者间的距离不小于一个给定的数D.…
算法名称 适用范围 算法过程 Dijkstra 无负权 从s开始,选择尚未完成的点中,distance最小的点,对其所有边进行松弛:直到所有结点都已完成 Bellman-Ford 可用有负权 依次对所有边进行松弛,一共对所有边松弛n-1次,判断是否有负权 Floyd 无负权 依次对所有点(的所有边进行松弛),直到完成对所有点的操作…
zz http://blog.sina.com.cn/s/blog_6ad20aef0100mc1a.html Spfa算法 (模板源代码) 这是Bellman Ford的改进算法.    算法介绍:建立一个队列,初始时队列里只有起始点,在建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为0).然后执行松弛操作,用队列里有的点去刷新起始点到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后.重复执行直到队列为空.     时间复杂度:…
Bellman-ford: /* bellman ford */ #include <iostream> #include <cstdio> #include <cstring> using namespace std; const int INF = 0x3f3f3f3f; const int Max = 9999; typedef struct edge{ int from,to; int ed; }Edge; Edge edge[100]; int v[Max];…
题目大意:原题链接 给你一张图,初始你在房间1,初始生命值为100,进入每个房间会加上那个房间的生命(可能为负),问是否能到达房间n.(要求进入每个房间后生命值都大于0) 解题思路: 解法一:Floyd+Bellman 1.Floyd先判断图是否连通,不连通则直接失败 2.Bellman Ford然后跑最长路,判断是否有正环或者有正通路 #include<cstdio> #include<cstring> using namespace std; ],d[]; ][],link[]…
bellman ford 算法求最短路径 #include <iostream> using namespace std; ; ; // 边, typedef struct Edge{ int u, v; // 起点,重点 int weight; // 边的权值 }Edge; Edge edge[maxnum]; // 保存边的值 int dist[maxnum]; // 结点到源点最小距离 int nodenum, edgenum, source; // 结点数,边数,源点 // 初始化图…
版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/.未经本作者同意不得转载. https://blog.csdn.net/kenden23/article/details/37737817 本题就是须要检查有没有负环存在于路径中,使用Bellman Ford算法能够检查是否有负环存在. 算法非常easy,就是在Bellman Ford后面添加一个循环推断就能够了. 题目故事非常奇怪,小心读题. #include <stdio.h> #include…
题意 : 真真是做POJ第一次遇到中文题,好吧,虽然语言通了,我一开始也没看懂样例什么意思,题意的话就是说这个探险家想娶酋长的女儿,但是没有钱,酋长说他可以用祭司的水晶球或者皮袄来换取少花一部分钱,同样的祭司也提出了类似的要求.最后输出能够花的最少的钱去迎娶酋长的女儿. 这个题需要注意的点是:1.等级问题,等级相差过大的话,不与探险家交换: 2.而每一个物件,编号自1到n是已经默认的,所以不用再去赋值或者迷惑了.. 思路 :就是一个最短路的问题,Dijkstra还有 Bellman ford 以…
Forwarding Emails Time Limit: 1000ms Memory Limit: 131072KB This problem will be judged on UVA. Original ID: 1244264-bit integer IO format: %lld      Java class name: Main Prev Submit Status Statistics Discuss Next Type: None   None Graph Theory 2-SA…
特别说明 本文转载自三金(frinemore)的博客: 点这 前言 1.关于SPFA,它没死. 2.接下来的所有代码,都是自己手写的(未检查正确性,补充的代码有检查过,是对的),有错误请帮忙指出. SPFA原理及正确性 若给定的图存在负权边,类似Dijkstra算法等算法便没有了用武之地,SPFA算法便派上用场了.简洁起见,我们约定加权有向图G不存在负权回路,即最短路径一定存在.用数组d记录每个结点的最短路径估计值,而且用邻接表来存储图G.我们采取的方法是动态逼近法:设立一个先进先出的队列用来保…
Bellman-Ford 贝尔曼-福特 算法思想 贝尔曼-福特算法(英语:Bellman–Ford algorithm),求解单源最短路径问题的一种算法,由理查德·贝尔曼 和 莱斯特·福特 创立的.它的原理是对图进行次松弛操作,得到所有可能的最短路径.其优于迪科斯彻算法的方面是边的权值可以为负数.实现简单,缺点是时间复杂度过高,高达O(|N||M|).但算法可以进行若干种优化,提高了效率. 首先指出,图的任意一条最短路径既不能包含负权回路,也不会包含正权回路,因此它最多包含|N|-1条边. 枚举…
图论 学好图论的基础: 必须意识到图论hendanteng xuehuifangqi(雾 图 G = (V,E) 一般来说,图的存储难度主要在记录边的信息 无向图的存储中,只需要将一条无向边拆成两条即可 存图: 1.邻接矩阵(经典):代码连接 用一个二维数组 edg[N][N] 表示 edg[i][j] 就对应由 i 到 j 的边信息 edg[i][j] 可以记录 Bool,也可以记录边权 举个栗子: 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 首先这是个无向图(因为它是对称…
关于模板什么的还有算法的具体介绍 戳我 这里我们只做所有最短路的具体分析. 那么同是求解最短路,这些算法到底有什么区别和联系: 对于BFS来说,他没有松弛操作,他的理论思想是从每一点做树形便利,那么时间复杂度绝对是在大型图中难以接受的,所以BFS题目设计很精巧,数据限制,更重要的是他可以处理一些条件很麻烦的联通情况,比如在途中,每步长相同求到达某一地的时间,那么我们要用最短路,就需要建图,但是借助BFS就不需要建图,这么麻烦的事情了. 对于其他最短路,核心思想是松弛,那么先说Floyd,其核心思…
原文:Programiz 协议:CC BY-NC-SA 4.0 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远. 在线阅读 ApacheCN 学习资源 目录 Programiz C 语言教程 C 简介 C 关键字和标识符 C 变量,常量和字面值 C 数据类型 C 输入输出(I/O) C 编程运算符 C 简单示例 C 流程控制 C if...else语句 C for循环 C while和do...while循环 C break和continue C switch语句 C got…
AcWing 849 Dijkstra求最短路 I 题解 以此题为例介绍一下图论中的最短路算法.先让我们考虑以下问题: 给定一个 \(n\) 个点 \(m\) 条边的有向图(无向图),图中可能存在重边和自环,给定所有边的边权.请求出给定的一点到另一点的权值之和最小的一条路径. 上述问题即所谓的最短路问题.解决这类问题的常用最短路算法: \(Floyd\) 算法(多源最短路径) \(Dijkstra\) 算法(没有负权边的单源最短路径) \(Bellman\)-\(Ford\) 算法(含有负权边的…
流网络(Flow Networks)指的是一个有向图 G = (V, E),其中每条边 (u, v) ∈ E 均有一非负容量 c(u, v) ≥ 0.如果 (u, v) ∉ E 则可以规定 c(u, v) = 0.流网络中有两个特殊的顶点:源点 s (source)和汇点 t(sink).为方便起见,假定每个顶点均处于从源点到汇点的某条路径上,就是说,对每个顶点 v ∈ E,存在一条路径 s --> v --> t.因此,图 G 为连通图,且 |E| ≥ |V| - 1. 下图展示了一个流网络…
解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括: Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负: Bellman-Ford 单源最短路径算法:时间复杂度为 O(VE),适用于带负权值情况: 对于全源最短路径问题(All-Pairs Shortest Paths Problem),可以认为是单源最短路径问题的推广,即分别以每个顶点作为源顶点并求其至其它顶点的最短距离.例如,对每个顶点应用 Bel…
Floyd-Warshall 算法采用动态规划方案来解决在一个有向图 G = (V, E) 上每对顶点间的最短路径问题,即全源最短路径问题(All-Pairs Shortest Paths Problem),其中图 G 允许存在权值为负的边,但不存在权值为负的回路.Floyd-Warshall 算法的运行时间为 Θ(V3). Floyd-Warshall 算法由 Robert Floyd 于 1962 年提出,但其实质上与 Bernad Roy 于 1959 年和 Stephen Warshal…
Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Lester Ford 分别发表于 1958 年和 1956 年,而实际上 Edward F. Moore 也在 1957 年发布了相同的算法,因此,此算法也常被称为 Bellman-Ford-Moore 算法. Bellman-Ford 算法和 Dijkstra 算法同为解决单源最短路径的算法.对于带权有向…