零.说明: 本文的所有代码均可在 DML 找到,欢迎点星星. 注.CNN的这份代码非常慢,基本上没有实际使用的可能,所以我只是发出来,代表我还是实践过而已 一.引入: CNN这个模型实在是有些年份了,最近随着深度学习的兴起又开始焕发青春了,把imagenet测试的准确度提高了非常多,一个是Alex的工作,然后最近好像Zeiler又有突破性的成果,可惜这些我都没看过,主要是imagenet的数据太大了,我根本没有可能跑得动,所以学习的积极性有些打折扣.不说那么多,还是先实现一个最基础的CNN再说吧…
 申明:本文非笔者原创,原文转载自:http://www.36dsj.com/archives/24006 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先说几点自己对于CNN的感触.先明确一点就是,Deep Learning是全部深度学习算法的总称,CNN是深度学习…
一.CNN的原理 1.CNN的思想: (1)借鉴了hopfield神经网络和CA a.hopfield的非线性动力学(主要是用于优化问题,比如旅行商问题等NP问题),Hopfield的能量函数的概念,Hopfield解决了模拟电路的实现问题 b.CA细胞自动机,局部连接的时间和空间都离散的动力学系统,CNN借鉴了CA的细胞的概念和局部性.一致性.平行性等特点 2.结构和模型 (1)结构图如下图所示: (2)理论模型 半径和领域:半径r和领域N(r),3*3邻域和5*5邻域等 CNN的状态方程:…
本文结合Deep learning的一个应用,Convolution Neural Network 进行一些基本应用,参考Lecun的Document 0.1进行部分拓展,与结果展示(in python). 分为以下几部分: 1. Convolution(卷积) 2. Pooling(降采样过程) 3. CNN结构 4.  跑实验 下面分别介绍. PS:本篇blog为ese机器学习短期班参考资料(20140516课程),本文只是简要讲最naive最simple的思想,重在实践部分,原理课上详述.…
一. 预备知识 包括 Linear Regression, Logistic Regression和 Multi-Layer Neural Network.参考 http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/ 或者coursera看Andrew Ng 的机器学习课程.二者只是在某些公式表达上有细微的差距. 二. 卷积神经网络CONVNET 此部分来自 http://m.blog.csdn.net/ar…
On Explainability of Deep Neural Networks « Learning F# Functional Data Structures and Algorithms is Out!   On Explainability of Deep Neural Networks During a discussion yesterday with software architect extraordinaire David Lazar regarding how every…
Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)   Deep Neural Networks, especially Convolutional Neural Networks (CNN), allows computational models that are composed of multiple processing layers to learn representations of data with…
http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html Deep Neural Networks, especially Convolutional Neural Networks (CNN), allows computational models that are composed of multiple processing layers to learn representations of data with mul…
卷积神经网络(Convolutional Neural Networks/ CNN/ConvNets) 卷积神经网络和普通神经网络十分相似: 组成它们的神经元都具有可学习的权重(weights)和偏置(biases).每个神经元接受一些输入,执行一个点积操作,并且可能执行一个非线性函数最后得到该神经元的输出.整个网络仍然可以表示为一个可微评分函数.这个函数在一端输入图像的像素,在另一端得到某个类别的分数.同时卷积神经网络在做后一个层(fully-connected)上仍然具有损失函数--例如SV…
Note This section assumes the reader has already read through Classifying MNIST digits using Logistic Regression and Multilayer Perceptron. Additionally, it uses the following new Theano functions and concepts: T.tanh, shared variables, basic arithme…
Linear Classification 在上一讲里,我们介绍了图像分类问题以及一个简单的分类模型K-NN模型,我们已经知道K-NN的模型有几个严重的缺陷,第一就是要保存训练集里的所有样本,这个比较消耗存储空间:第二就是要遍历所有的训练样本,这种逐一比较的方式比较耗时而低效. 现在,我们要介绍一种更加强大的图像分类模型,这个模型会很自然地引申出神经网络和Convolutional Neural Networks(CNN),这个模型有两个重要的组成部分,一个是score function,将原始…
这是用Python实现的Neural Networks, 基于Python 2.7.9, numpy, matplotlib. 代码来源于斯坦福大学的课程: http://cs231n.github.io/neural-networks-case-study/ 基本是照搬过来,通过这个程序有助于了解python语法,以及Neural Networks 的原理. import numpy as np import matplotlib.pyplot as plt N = 200 # number…
Concolutional Neural Networks(CNN)同样使用三层结构,但结构上同Feedforward Neural Network有很大不同,其结构如下图: Input layer: 对单张图片来说,输入数据是3D的(Width*Length*Depth),见下方的立体图.但如果我们使用mini-batch去训练神经网络的话,则input变为了4D数据(Width*Length*Depth*Batch_size). Feature-extraction layers:Convo…
1. Main Point 0x1:行文框架 第二章:我们会分别介绍NNs神经网络和PR多项式回归各自的定义和应用场景. 第三章:讨论NNs和PR在数学公式上的等价性,NNs和PR是两个等价的理论方法,只是用了不同的方法解决了同一个问题,这样我们就形成了一个统一的观察视角,不再将深度神经网络看成是一个独立的算法. 第四章:讨论通用逼近理论,这是为了将视角提高到一个更高的框架体系,通用逼近理论证明了所有的目标函数都可以拟合,换句话说就是,所有的问题都可以通过深度学习解决.但是通用逼近理论并没有告诉…
论文  < Convolutional Neural Networks for Sentence Classification>通过CNN实现了文本分类. 论文地址: 666666 模型图: 模型解释可以看论文,给出code and comment: # -*- coding: utf-8 -*- # @time : 2019/11/9 13:55 import numpy as np import torch import torch.nn as nn import torch.optim…
本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译.(This article is my personal translation for the tutorial written and posted by Arthur Juliani on Medium.com.) 原文地址(URL for original article):https://medium.com/emergent-future/simple-reinforcement-learni…
这是Jake Bouvrie在2006年写的关于CNN的训练原理,虽然文献老了点,不过对理解经典CNN的训练过程还是很有帮助的.该作者是剑桥的研究认知科学的.翻译如有不对之处,还望告知,我好及时改正,谢谢指正! Notes on Convolutional Neural Networks Jake Bouvrie 2006年11月22 1引言 这个文档是为了讨论CNN的推导和执行步骤的,并加上一些简单的扩展.因为CNN包含着比权重还多的连接,所以结构本身就相当于实现了一种形式的正则化了.另外CN…
课程主页:http://cs231n.stanford.edu/   Introduction to neural networks -Training Neural Network ______________________________________________________________________________________________________________________________________________________________…
Convolutional Neural Networks卷积神经网络 Contents 一:前导 Back Propagation反向传播算法 网络结构 学习算法 二:Convolutional Neural Networks卷积神经网络 三:LeCun的LeNet-5 四:CNNs的训练过程 五:总结 本文是我在20140822的周报,其中部分参照了以下博文或论文,如果在文中有一些没说明白的地方,可以查阅他们.对Yann LeCun前辈,和celerychen2009.zouxy09表示感谢…
========================================================================================== 最近一直在看Deep Learning,各类博客.论文看得不少 但是说实话,这样做有些疏于实现,一来呢自己的电脑也不是很好,二来呢我目前也没能力自己去写一个toolbox 只是跟着Andrew Ng的UFLDL tutorial 写了些已有框架的代码(这部分的代码见github) 后来发现了一个matlab的Deep…
由于本章过长,分为两个部分,这是第一部分. 这几年提到RNN,一般指Recurrent Neural Networks,至于翻译成循环神经网络还是递归神经网络都可以.wiki上面把Recurrent Neural Networks叫做时间递归神经网络,与之对应的还有一个结构递归神经网络(recursive neural network).本文讨论的是前者. RNN是一种可以预测未来(在某种程度上)的神经网络,可以用来分析时间序列数据(比如分析股价,预测买入点和卖出点).在自动驾驶中,可以预测路线…
1. 针对机器学习/深度神经网络“记忆能力”的讨论 0x1:数据规律的本质是能代表此类数据的通用模式 - 数据挖掘的本质是在进行模式提取 数据的本质是存储信息的介质,而模式(pattern)是信息的一种表现形式.在一个数据集中,模式有很多不同的表现形式,不管是在传统的机器学习训练的过程,还是是深度学习的训练过程,本质上都是在进行模式提取. 而从信息论的角度来看,模式提取也可以理解为一种信息压缩过程,通过将信息从一种形式压缩为另一种形式.压缩的过程不可避免会造成信息丢失. 笔者这里列举几种典型的体…
目录 1 神经网络 2 卷积神经网络 2.1 局部感知 2.2 参数共享 2.3 多卷积核 2.4 Down-pooling 2.5 多层卷积 3 ImageNet-2010网络结构 4 DeepID网络结构 5 参考资源 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先…
Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记1 Link: Hinton的CSC321课程笔记2 一年后再看课程,亦有收获,虽然看似明白,但细细推敲其实能挖掘出很多深刻的内容:以下为在线课程以及该笔记的课程重难点总结. Lecture 01 增强学习: (这是ng的拿手好戏,他做无人直升机可是做了好久)增强学习的输出是一个动作或者一系列的动作,通过与实际的场合下的环境互动来决定动作,增强学习的…
CS231n Winter 2016: Lecture 5: Neural Networks Part 2 CS231n Winter 2016: Lecture 6: Neural Networks Part 3 by Andrej Karpathy 本章节主要讲解激活函数,参数初始化以及周边的知识体系. Ref: <深度学习>第八章 - 深度模型中的优化 Overview 1. One time setup activation functions, preprocessing, weig…
转自:http://blog.csdn.net/zouxy09/article/details/8781543 9.5.Convolutional Neural Networks卷积神经网络 卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领域的研究热点.它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量.该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程.卷积网络是为识别…
An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/comment-page-4/?unapproved=31867&moderation-hash=1ac28e426bc9919dc1a295563f9c60ae#comment-31867 一.什么是卷积神经网络.为什么卷积神经网络很重要? 卷…
第一周:深度学习引言(Introduction to Deep Learning) 欢迎(Welcome) 深度学习改变了传统互联网业务,例如如网络搜索和广告.但是深度学习同时也使得许多新产品和企业以很多方式帮助人们,从获得更好的健康关注. 深度学习做的非常好的一个方面就是读取 X 光图像,到生活中的个性化教育,到精准化农业,甚至到驾驶汽车以及其它一些方面.如果你想要学习深度学习的这些工具,并应用它们来做这些令人窒息的操作,本课程将帮助你做到这一点.当你完成 cousera 上面的这一系列专项课…
CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻译 综述深度卷积神经网络架构:从基本组件到结构创新 目录 摘要    1.引言    2.CNN基本组件        2.1 卷积层        2.2 池化层        2.3 激活函数        2.4 批次归一化        2.5 Dropout        2.6 全连接层…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Contents: ABSTRACT 1. Introduction 2. Biological background 2.1. Spiking neuron models 2.2. Synaptic plasticity 2.2.1. Unsupervised learning 2.2.2. Supervised learning 2.2.3. Reinforcement learning 2.2.4. Delay learning…