论文笔记:Batch Normalization】的更多相关文章

这篇经典论文,甚至可以说是2015年最牛的一篇论文,早就有很多人解读,不需要自己着摸,但是看了论文原文Batch normalization: Accelerating deep network training by reducing internal covariate shift 和下面的这些解读之后,还有感觉有些不明白.比如, 是怎么推导出来的,我怎么就是没搞懂呢? 1.论文翻译:论文笔记-Batch Normalization 2.博客专家 黄锦池 的解读:深度学习(二十九)Batch…
Coursera吴恩达<优化深度神经网络>课程笔记(3)-- 超参数调试.Batch正则化和编程框架 1. Tuning Process 深度神经网络需要调试的超参数(Hyperparameters)较多,包括: :学习因子 :动量梯度下降因子 :Adam算法参数 #layers:神经网络层数 #hidden units:各隐藏层神经元个数 learning rate decay:学习因子下降参数 mini-batch size:批量训练样本包含的样本个数 超参数之间也有重要性差异. 1.通常…
原文:http://blog.csdn.net/happynear/article/details/44238541 今年过年之前,MSRA和Google相继在ImagenNet图像识别数据集上报告他们的效果超越了人类水平,下面将分两期介绍两者的算法细节. 这次先讲Google的这篇<Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift>,主要是因为这里面的思想比较…
前言 懒癌翻了,这篇不想写overview了,公式也比较多,今天有(zhao)点(jie)累(kou),不想一点点写latex啦,读论文的时候感觉文章不错,虽然看似很多数学公式,其实都是比较基础的公式,文章也比较细,从网上找了两篇较好的讲解,引用连接在每篇文章前面. 文章1 https://www.cnblogs.com/guoyaohua/p/8724433.html#undefined Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性.虽然有…
这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结得出. Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性.虽然有些细节处理还解释不清其理论原因,但是实践证明好用才是真的好,别忘了DL从Hinton对深层网络做Pre-Train开始就是一个经验领先于理论分析的偏经验的一门学问.本文是对论文<Batch Normalization: A…
转自:https://www.cnblogs.com/guoyaohua/p/8724433.html 郭耀华's Blog 欲穷千里目,更上一层楼项目主页:https://github.com/guoyaohua/ 博客园 首页 新随笔 联系 订阅 管理 [深度学习]深入理解Batch Normalization批标准化   这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结得出.…
目录 1. PROBLEM 1.1. Introduction 1.2. Analysis 2. SOLUTION 2.1. Batch Normalization 及其问题 2.2. 梯度修正及其问题 2.3. Key Algorithm 2.4. Inference 2.5. 实际应用方式 3. EFFECT 论文:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Sh…
在深度学习中为了提高训练速度,经常会使用一些正正则化方法,如L2.dropout,后来Sergey Ioffe 等人提出Batch Normalization方法,可以防止数据分布的变化,影响神经网络需要重新学习分布带来的影响,会降低学习速率,训练时间等问题.提出使用batch normalization方法,使输入数据分布规律保持一致.实验证明可以提升训练速度,提高识别精度.下面讲解一下在Tensorflow中如何使用Batch Normalization 有关Batch Normalizat…
本篇博文转自:https://www.cnblogs.com/guoyaohua/p/8724433.html Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性.虽然有些细节处理还解释不清其理论原因,但是实践证明好用才是真的好,别忘了DL从Hinton对深层网络做Pre-Train开始就是一个经验领先于理论分析的偏经验的一门学问.本文是对论文<Batch Normalization: Accelerating Deep Network Train…
文章转载自:http://www.cnblogs.com/guoyaohua/p/8724433.html Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性.虽然有些细节处理还解释不清其理论原因,但是实践证明好用才是真的好,别忘了DL从Hinton对深层网络做Pre-Train开始就是一个经验领先于理论分析的偏经验的一门学问.本文是对论文<Batch Normalization: Accelerating Deep Network Trainin…