SPOJ Prime or Not - 快速乘 - 快速幂】的更多相关文章

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5690 题意:m个数字全为x mod k ?= c;其中m <= 1010,0 < c,k <= 10,000; 法1:xxx = (10m-1)/9*x;但是n太大,需要同时mod.去除分母将式子变为:10m*x%(9k) - x%(9k) =? 9c ;其中 10m 快速二次幂即可: 时间复杂度为O(logn) 法2: 由于m个x数的产生对于mod具有可拆分性,所以直接求解周期即可: #i…
快速傅里叶变换 & 快速数论变换 [update 3.29.2017] 前言 2月10日初学,记得那时好像是正月十五放假那一天 当时写了手写版的笔记 过去近50天差不多忘光了,于是复习一下,具体请看手写版笔记 参考文献:picks miskcoo menci 阮一峰 Fast Fourier Transform 单位复数根 虚数 复数 \(i\),表示逆时针旋转90度 \(a+bi\),对应复平面上的向量 复数加法 同向量 复数乘法 "模长相乘,幅角相加",\((a+bi)*(…
Given the number, you are to answer the question: "Is it prime?" Solutions to this problem can be submitted in C, C++, Pascal, Perl, Python, Ruby, Lisp, Hask, Ocaml, Prolog, Whitespace, Brainf**k and Intercal only. Input t – the number of test c…
快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c  二.矩阵快速乘法 一.整数运算:(快速乘法.快速幂) 先说明一下基本的数学常识: (a*b) mod c == ( (a mod c) * (b mod c) ) mod c //这最后一个mod c 是为了保证结果不超过c 对于2进制,2n可用1后接n个0来表示.对于8进制,可用公式 i+3*j ==…
在实际应用中为了防止数据爆出,在计算a*b%m和x^n%m时,可以采用此方法.在数论中有以下结论: a*b%m=((a%m)*(b*m))%m ; (a+b)%m=(a%m+b%m)%m ; _int64 Plus(_int64 a, _int64 b,_int64 m) { //计算a*b%m _int64 res = ; ) { ) res=(res+a)%m; a = (a << ) % m; b >>= ; } return res; } _int64 Power(_int…
一般的快速幂并不适合模数大于int范围的情况,因为在乘法运算的过程可能会出现超出long long的情况出现.这个时候可以利用快速幂的思想使用快速乘,原理就是模拟乘法运算,将乘法运算分解成加法运算,再每次加的时候取模,具体实现类似快速幂,代码如下: LL M; LL qmul(LL a,LL b){ LL ret=; while(b){ ) ret=(ret+a)%M; b>>=; a=(a+a)%M; } return ret; } LL qpow(LL a,LL b){ LL ret=;…
4.1 环境介绍 K8s 1.9 以上版本. 4.2 快速部署Istio 下载:  https://github.com/istio/istio/releases/,  下载 1.1.0-snapshot.5/istio-1.1.0-snapshot.5-linux.tar.gz 1:   wget   https://github.com/istio/istio/releases/download/1.1.0-snapshot.5/istio-1.1.0-snapshot.5-linux.ta…
什么是OSharp OSharpNS全称OSharp Framework with .NetStandard2.0,是一个基于.NetStandard2.0开发的一个.NetCore快速开发框架.这个框架使用最新稳定版的.NetCore SDK(当前是.NET Core 2.2),对 AspNetCore 的配置.依赖注入.日志.缓存.实体框架.Mvc(WebApi).身份认证.权限授权等模块进行更高一级的自动化封装,并规范了一套业务实现的代码结构与操作流程,使 .Net Core 框架更易于应…
先看看. 通常模数常见的有998244353,1004535809,469762049,这几个的原根都是3.所求的项数还不能超过2的23次方(因为998244353的分解). 感觉没啥用. #include <cstdio> #include <cstring> template <class T> inline void swap(T &a, T &b) { T c; c = a; a = b; b = c; } ; , G = ; inline in…
u1s1 距离省选只剩 5 days 了,现在学新算法真的合适吗(( 位运算卷积 众所周知,对于最普通的卷积 \(c_i=\sum\limits_{j+k=i}a_jb_k\),\(a_jb_k\) 的贡献累加到 \(c_{j+k}\) 上,因此这种卷积又被称为加法卷积. 但是对于某些卷积,\(a_jb_k\) 的贡献就不是累加到 \(j+k\) 上了,有一类卷积,\(a_jb_k\) 的贡献会累加到 \(j\otimes k\) 上,其中 \(\otimes\) 是某种位运算,即 \(\&,|…