FastText 文本分类使用心得】的更多相关文章

http://blog.csdn.net/thriving_fcl/article/details/53239856 最近在一个项目里使用了fasttext[1], 这是facebook今年开源的一个词向量与文本分类工具,在学术上没有什么创新点,但是好处就是模型简单,训练速度又非常快.我在最近的一个项目里尝试了一下,发现用起来真的很顺手,做出来的结果也可以达到上线使用的标准. 其实fasttext使用的模型与word2vec的模型在结构上是一样的,拿cbow来说,不同的只是在于word2vec…
1.概述 FastText 文本分类算法是有Facebook AI Research 提出的一种简单的模型.实验表明一般情况下,FastText 算法能获得和深度模型相同的精度,但是计算时间却要远远小于深度学习模型.fastText 可以作为一个文本分类的 baseline 模型. 2.模型架构 fastText 的模型架构和 word2vec 中的CBOW 模型的结构很相似.CBOW 模型是利用上下文来预测中间词,而fastText 是利用上下文来预测文本的类别.而且从本质上来说,word2v…
http://blog.csdn.net/weixin_36604953/article/details/78195462?locationNum=8&fps=1 文本分类需要CNN?No!fastText完美解决你的需求(前篇) fastText是个啥?简单一点说,就是一种可以得到和深度学习结果准确率相同,但是速度快出几个世纪的文本分类算法.这个算法类似与CBOW,可爱的读着是不是要问CBOW又是个什么鬼?莫急,听小编给你慢慢到来,一篇文章,让你了解word2vec的原理,CBOW.Skip-…
目录 DAN(Deep Average Network) Fasttext fasttext文本分类 fasttext的n-gram模型 Doc2vec DAN(Deep Average Network) MLP(Multi-Layer Perceptrons)叫做多层感知机,即由多层网络简单堆叠而成,进而我们可以在输出层加入softmax,或者将输入层作为特征进行提取后,输入到SVM,逻辑回归,朴素贝叶斯等传统分类器进行分类预测.其中最具代表的是DAN,其基本结构如下图所示: 在输入层,我们对…
http://blog.csdn.net/weixin_36604953/article/details/78324834 想必通过前一篇的介绍,各位小主已经对word2vec以及CBOW和Skip-gram有了比较清晰的了解.在这一篇中,小编带大家走进业内最新潮的文本分类算法,也就是fastText分类器.fastText与word2vec的提出者之所以会想到用fastText取代CNN(卷积神经网络)等深度学习模型,目的是为了在大数据情况下提高运算速度. 其实,文本的学习与图像的学习是不同的…
该算法由facebook在2016年开源,典型应用场景是“带监督的文本分类问题”.   模型 模型的优化目标如下:   其中,$<x_n,y_n>$是一条训练样本,$y_n$是训练目标,$x_n$是normalized bag of features.矩阵参数A是基于word的look-up table,也就是A是词的embedding向量.$Ax_n$矩阵运算的数学意义是将word的embedding向量找到后相加或者取平均,得到hidden向量.矩阵参数B是函数f的参数,函数f是一个多分类…
http://blog.csdn.net/lxg0807/article/details/52960072 环境说明:python2.7.linux 自己打自己脸,目前官方的包只能在linux,mac环境下使用.误导大家了,对不起. 测试facebook开源的基于深度学习的对文本分类的fastText模型 fasttext python包的安装: pip install fasttext 1 第一步获取分类文本,文本直接用的清华大学的新闻分本,可在文本系列的第三篇找到下载地址. 输出数据格式:…
https://mp.weixin.qq.com/s/_xILvfEMx3URcB-5C8vfTw 这个库的目的是探索用深度学习进行NLP文本分类的方法. 它具有文本分类的各种基准模型,还支持多标签分类,其中多标签与句子或文档相关联. 虽然这些模型很多都很简单,可能不会让你在这项文本分类任务中游刃有余,但是这些模型中的其中一些是非常经典的,因此它们可以说是非常适合作为基准模型的. 每个模型在模型类型下都有一个测试函数. 我们还探讨了用两个seq2seq模型(带有注意的seq2seq模型,以及tr…
目录 简介 TFIDF 朴素贝叶斯分类器 贝叶斯公式 贝叶斯决策论的理解 极大似然估计 朴素贝叶斯分类器 TextRNN TextCNN TextRCNN FastText HAN Highway Networks 简介 通常,进行文本分类的主要方法有三种: 基于规则特征匹配的方法(如根据喜欢,讨厌等特殊词来评判情感,但准确率低,通常作为一种辅助判断的方法) 基于传统机器学习的方法(特征工程 + 分类算法) 给予深度学习的方法(词向量 + 神经网络) 自BERT提出以来,各大NLP比赛基本上已经…
Fasttext是FaceBook开源的文本分类和词向量训练库.最初看其他教程看的我十分迷惑,咋的一会ngram是字符一会ngram又变成了单词,最后发现其实是两个模型,一个是文本分类模型[Ref2],表现不是最好的但胜在结构简单高效,另一个用于词向量训练[Ref1],创新在于把单词分解成字符结构,可以infer训练集外的单词.这里拿quora的词分类数据集尝试了下Fasttext在文本分类的效果, 代码详见 https://github.com/DSXiangLi/Embedding Fast…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
参考来源:https://blog.csdn.net/u012762419/article/details/79561441 TextCNN结构 TextCNN的结构比较简单,输入数据首先通过一个embedding layer,得到输入语句的embedding表示,然后通过一个convolution layer,提取语句的特征,最后通过一个fully connected layer得到最终的输出,整个模型的结构如下图: embedding layer:即嵌入层,这一层的主要作用是将输入的自然语言…
https://www.wxwenku.com/d/102093756 AI科技评论按:前几天,Yann LeCun与其学生 张翔在arXiv上发表了一篇新作「Which Encoding is the Best for Text Classification in Chinese, English, Japanese and Korean?」.这篇文章做了一个包含473种模型的大型对比实验,实验的目的是对文本分类任务中不同语言(英语.汉语.韩语和日语)不同的level(utf-8 .字符等)和…
https://zhuanlan.zhihu.com/p/25928551 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类领域特别是应用深度学习解决文本分类的相关的思路.做法和部分实践的经验. 业务问题描述: 淘宝商品的一个典型的例子见下图,图中商品的标题是“夏装雪纺条纹短袖t恤女春半袖衣服夏天中长款大码胖mm显瘦上衣夏”.淘宝网后台是通过树形的多层的类目体系管理商品的,覆盖叶子类目数量达上万个,商品量也是10亿量级,…
转自知乎上看到的一篇很棒的文章:用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类领域特别是应用深度学习解决文本分类的相关的思路.做法和部分实践的经验. 业务问题描述: 淘宝商品的一个典型的例子见下图,图中商品的标题是“夏装雪纺条纹短袖t恤女春半袖衣服夏天中长款大码胖mm显瘦上衣夏”.淘宝网后台是通过树形的多层的类目体系管理商品的,覆盖…
模型: FastText TextCNN TextRNN RCNN 分层注意网络(Hierarchical Attention Network) 具有注意的seq2seq模型(seq2seq with attention) Transformer("Attend Is All You Need") 动态记忆网络(Dynamic Memory Network) 实体网络:追踪世界的状态 其他模型: BiLstm Text Relation: Two CNN Text Relation:…
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于Text-CNN模型在搜狗新闻数据集上二分类的Demo. 文本分类是自然语言处理领域最活跃的研究方向之一,从样本数据的分类标签是否互斥上来说,可以分为文本多分类与文本多标签分类. 文本分类 目前文本分类在工业界的应用场景非常普遍,从新闻的分类.商品评论信息的情感分类到微博信息打标签辅助推荐系统,了解文…
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于Text-CNN模型在搜狗新闻数据集上二分类的Demo. 文本分类是自然语言处理领域最活跃的研究方向之一,从样本数据的分类标签是否互斥上来说,可以分为文本多分类与文本多标签分类. 文本分类 目前文本分类在工业界的应用场景非常普遍,从新闻的分类.商品评论信息的情感分类到微博信息打标签辅助推荐系统,了解文…
实战:https://github.com/jiangxinyang227/NLP-Project 一.简介: 1.传统的文本分类方法:[人工特征工程+浅层分类模型] (1)文本预处理: ①(中文) 文本分词 正向/逆向/双向最大匹配; 基于理解的句法和语义分析消歧: 基于统计的互信息/CRF方法: WordEmbedding + Bi-LSTM+CRF方法 去停用词:维护一个停用词表 (2)特征提取 特征选择的基本思路是根据某个评价指标独立的对原始特征项(词项)进行评分排序,从中选择得分最高的…
这是前一段时间在做的事情,有些python库需要python3.5以上,所以mac请先升级 brew安装以下就好,然后Preference(comm+',')->Project: Text-Classification-m...->Project Interpreter->setting button->add,添加python的虚拟环境(usr/local/bin/python3.7),然后就去安装那些包 然后去github找一份代码学习下,在此之前请先连接这个技术需要什么,我找…
原创作者 | 苏菲 论文来源: https://aclanthology.org/2020.emnlp-main.668/ 论文题目: Text Graph Transformer for Document Classification (文本图Tranformer在文本分类中的应用) 论文作者: Haopeng Zhang Jiawei Zhang 01 引言 文本分类是自然语言处理中的基本任务之一,而图神经网络(GNN)技术可以描述词语.文本以及语料库,最近研究者将GNN应用到抓取语料库中单…
这里做了一些小的修改,感谢谷歌rd的帮助,使得能够统一处理dense的数据,或者类似文本分类这样sparse的输入数据.后续会做进一步学习优化,比如如何多线程处理. 具体如何处理sparse 主要是使用embedding_lookup_sparse,参考 https://github.com/tensorflow/tensorflow/issues/342 两个文件 melt.py binary_classification.py 代码和数据已经上传到 https://github.com/ch…
Atitti 文本分类  以及 垃圾邮件 判断原理 以及贝叶斯算法的应用解决方案 1.1. 七.什么是贝叶斯过滤器?1 1.2. 八.建立历史资料库2 1.3. 十.联合概率的计算3 1.4. 十一.最终的计算公式3 1.5. .这时我们还需要一个用于比较的门槛值.Paul Graham的门槛值是0.9,概率大于0.9,4 1.1. 七.什么是贝叶斯过滤器? 垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户. 正确识别垃圾邮件的技术难度非常大.传统的垃圾邮件过滤方法,主要有"关键词法&quo…
weka介绍 参见 1)百度百科:http://baike.baidu.com/link?url=V9GKiFxiAoFkaUvPULJ7gK_xoEDnSfUNR1woed0YTmo20Wjo0wYo7uff4mq_wg3WzKhTZx4Ok0JFgtiYY19U4q 2)weka官网: http://www.cs.waikato.ac.nz/ml/weka/ 简单文本分类实现: 此处文本为已处理好的文本向量空间模型,关于文本特征提取主要是基于TF-IDF算法对已分词文档进行特征抽取,然后基于…
What is Text Classification? Text classification typically involves assigning a document to a category by automated or human means. LingPipe provides a classification facility that takes examples of text classifications--typically generated by a huma…
当我们尝试使用统计机器学习方法解决文本的有关问题时,第一个需要的解决的问题是,如果在计算机中表示出一个文本样本.一种经典而且被广泛运用的文本表示方法,即向量空间模型(VSM),俗称“词袋模型”. 我们首先看一下向量空间模型如何表示一个文本: 空间向量模型需要一个“字典”:文本的样本集中特征词集合,这个字典可以在样本集中产生,也可以从外部导入,上图中的字典是[baseball, specs, graphics,..., space, quicktime, computer]. 有了字典后便可以表示…
Part4文本分类 Part3文本聚类提到过.与聚类分类的简单差异. 那么,我们需要理清训练集的分类,有明白分类的文本:測试集,能够就用训练集来替代.预測集,就是未分类的文本.是分类方法最后的应用实现. 1.       数据准备 训练集准备是一个非常繁琐的功能,临时没发现什么省力的办法,依据文本内容去手动整理.这里还是使用的某品牌的官微数据,依据微博内容.我将它微博的主要内容分为了:促销资讯(promotion).产品推介(product).公益信息(publicWelfare).生活鸡汤(l…
1. Naive Bayes算法 朴素贝叶斯算法算是生成模型中一个最经典的分类算法之一了,常用的有Bernoulli和Multinomial两种.在文本分类上经常会用到这两种方法.在词袋模型中,对于一篇文档$d$中出现的词$w_0,w_1,...,w_n$, 这篇文章被分类为$c$的概率为$$p(c|w_0,w_1,...,w_n) = \frac{p(c,w_0,w_1,...,w_n)}{p(w_0,w_1,...,w_n)} = \frac{p(w_0,w_1,...,w_n|c)*p(c…
上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的向量.这样每个文本在分词之后,就可以根据我们之前得到的词袋,构造成一个向量,词袋中有多少个词,那这个向量就是多少维度的了.然后就把这些向量交给计算机去计算,而不再需要文本啦.而向量中的数字表示的是每个词所代表的权重.代表这个词对文本类型的影响程度. 在这个过程中我们需要解决两个问题:1.如何计算出适…
前言: 上一篇比较详细的介绍了卡方检验和卡方分布.这篇我们就实际操刀,找到一些训练集,正所谓纸上得来终觉浅,绝知此事要躬行.然而我在躬行的时候,发现了卡方检验对于文本分类来说应该把公式再变形一般,那样就完美了. 目录: 文本分类学习(一)开篇 文本分类学习(二)文本表示 文本分类学习(三)特征权重(TF/IDF)和特征提取        文本分类学习(四)特征选择之卡方检验 文本分类学习(五)机器学习SVM的前奏-特征提取(卡方检验续集) 一,回顾卡方检验 1.公式一: 先回顾一下卡方检验: 卡…