前言 扩展欧几里得算法是一个很好的解决同余问题的算法,非常实用. 欧几里得算法 简介 欧几里得算法,又称辗转相除法. 主要用途 求最大公因数\(gcd\). 公式 \(gcd(a,b)=gcd(b,a\%b)\) 公式证明 \(a\)可以表示成\(a=kb+a\%b\)(\(k\)为自然数). 假设\(g\)是\(a,b\)的一个公约数,则有\(g|a, g|b\). \(\because a\%b=a-kb\), \(\therefore g|(a\%b),\therefore g\)是\(b…
exgcd入门以及同余基础 gcd,欧几里得的智慧结晶,信息竞赛的重要算法,数论的...(编不下去了 讲exgcd之前,我们先普及一下同余的性质: 若,那么 若,,且p1,p2互质, 有了这三个式子,就不用怕在计算时溢出了. 下面我会用与分别表示a与b的最大公约数与最小公倍数. 首先会来学扩欧的同学肯定都会欧几里得算法(即辗转相除法)了吧 而通过观察发现:,先除后乘防溢出. 所以与的代码如下: inline int gcd(int a,int b) {)?a:gcd(b,a%b);} inlin…
关于扩展欧几里得从寒假时就很迷,抄题解过了同余方程,但是原理并不理解. 今天终于把坑填上了qwq. 由于本人太菜,不会用markdown,所以这篇总结是手写的(什么).(字丑不要嫌弃嘛) ********Update9.28********** 刚刚我们求出的是一组特值,那么如何求通值? 约定:设x0,y0为一组特解,t为任意整数,设a>b(不行再交换) 那么有 x=x0+b/gcd*t y=y0-a/gcd*t ******************************* 奉上三道例题: E…
贝祖定理:即如果a.b是整数,那么一定存在整数x.y使得ax+by=gcd(a,b).换句话说,如果ax+by=m有解,那么m一定是gcd(a,b)的若干倍.(可以来判断一个这样的式子有没有解)有一个直接的应用就是 如果ax+by=1有解,那么gcd(a,b)=1: int gcd(int a,int b){return b==0?a:gcd(b,a%b);} 然而这并不能告诉我们x,y解是多少. 扩欧 首先我们观察上面的式子发现一定有一个解a*1+b*0=gcd(a,b).(b%a=0) 但是…
Elementary Number Theory - Extended Euclid Algorithm Time Limit : 1 sec, Memory Limit : 65536 KB Japanese version is here Extended Euclid Algorithm Given positive integers a and b, find the integer solution (x, y) to ax+by=gcd(a,b), where gcd(a,b) is…
算法思想 我们想求得一组\(x,y\)使得 \(ax+by = \gcd(a,b)\) 根据 \(\gcd(a,b) = \gcd(b,a\bmod b)\) 如果我们现在有\(x',y'\) 使得 \(bx'+(a\bmod b)y' = \gcd(b,a\bmod b)\) 那么 \(ax+by = bx'+( a-\lfloor\frac a b\rfloor b)y'\) 移项之后 \(ax+by = ay'+b(x'-\lfloor\frac a b\rfloor y')\) 我们可以…
什么是GCD? GCD是最大公约数的简称(当然理解为我们伟大的党也未尝不可).在开头,我们先下几个定义: ①a|b表示a能整除b(a是b的约数) ②a mod b表示a-[a/b]b([a/b]在Pascal中相当于a div b) ③gcd(a,b)表示a和b的最大公约数 ④a和b的线性组合表示ax+by(x,y为整数).我们有:若d|a且d|b,则d|ax+by(这很重要!) 线性组合与GCD 现在我们证明一个重要的定理:gcd(a,b)是a和b的最小的正线性组合. 证明: 设gcd(a,b…
青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:132162   Accepted: 29199 Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能…
Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互质,所以这题就不能用传统解法了= = 其实还有种方法: 先来看只有两个式子的方程组: c≡b1 (mod a1) c≡b2 (mod a2) 变形得c=a1*x+b1,c=a2*x+b2 a1*x-a2*y=b2-b1 可以用扩展欧几里得求出x和y,进而求出c 那么多个式子呢?可以两个两个的迭代求.…
链接: https://www.acwing.com/problem/content/205/ 题意: 求关于x的同余方程 ax ≡ 1(mod b) 的最小正整数解. 思路: 首先:扩展欧几里得推导. 有ax+by = gcd(a, b) = gcd(b, a%b), ax+by = bx+(a%b)y ax+by = bx+(a-(a/b)b)y ax+by = bx + ay-(a/b)by ax+by = ay + b(x-a/by) 有x' = y, y' = x-a/by 递归求解…