http://www.cnblogs.com/charlotte77/p/5629865.html http://www.cnblogs.com/daniel-D/archive/2013/06/03/3116278.html http://deeplearning.stanford.edu/wiki/index.php/%E5%8F%8D%E5%90%91%E4%BC%A0%E5%AF%BC%E7%AE%97%E6%B3%95 http://blog.csdn.net/zjccoder/art…
前向计算:没啥好说的,一层一层套着算就完事了 y = f( ... f( Wlayer2T f( Wlayer1Tx ) ) ) 反向求导:链式法则 单独看一个神经元的计算,z (就是logit)对 wi 的偏微分等于 xi : 再看多层的情况,z 经过 激活函数得到 a,而 a 在下一层和 w3 .w4 都进行了计算.所以 C 对 z 求偏微分的话,根据链式法则这两条参数的路径都要去找,且 z' 对 a 的偏微分等于w3,z'' 对 a 的偏微分等于w4 : 到这里重点来了,想象有一个不存在神…
http://colah.github.io/posts/2015-08-Backprop/ http://www.zhihu.com/question/27239198 待翻译 http://blog.csdn.net/woxincd/article/details/7040944 对于我们的函数J(θ)求偏导J: 下面是更新的过程,也就是θi会向着梯度最小的方向进行减少.θi表示更新之前的值,-后面的部分表示按梯度方向减少的量,α表示步长,也就是每次按照梯度减少的方向变化多少.  一个很重要…
假设给定m个训练样本的训练集,用梯度下降法训练一个神经网络,对于单个训练样本(x,y),定义该样本的损失函数: 那么整个训练集的损失函数定义如下: 第一项是所有样本的方差的均值.第二项是一个归一化项(也叫权重衰减项),该项是为了减少权连接权重的更新速度,防止过拟合. 我们的目标是最小化关于 W 和 b 的函数J(W,b). 为了训练神经网络,把每个参数 和初始化为很小的接近于0的随机值(例如随机值由正态分布Normal(0,ε2)采样得到,把 ε 设为0.01), 然后运用批量梯度下降算法进行优…
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.3循环神经网络模型 为什么不使用标准的神经网络 假如将九个单词组成的序列作为输入,通过普通的神经网网络输出输出序列, 在不同的例子中输入数据和输出数据具有不同的长度,即每个数据不会有一样的长度 也许每个语句都有最大长度,能够通过Padding 的方式填充数据,但总体来说不是一个好的表达方式. 不共享从文本的不同位置上学到的特征 例如普通神经网络可以学习到Harry这个单词出现在\(x^{<1>}\)的位置,但是如果…
课程笔记 Coursera—Andrew Ng机器学习—课程笔记 Lecture 9_Neural Networks learning 作业说明 Exercise 4,Week 5,实现反向传播 backpropagation神经网络算法, 对图片中手写数字 0-9 进行识别. 数据集 :ex4data1.mat.手写数字图片数据,5000个样例.每张图片20px * 20px,也就是一共400个特征.数据集X维度为5000 * 400 ex4weights.mat.神经网络每一层的权重. 文件…
背景 反向传播(Backpropagation)是训练神经网络最通用的方法之一,网上有许多文章尝试解释反向传播是如何工作的,但是很少有包括真实数字的例子,这篇博文尝试通过离散的数据解释它是怎样工作的. Python实现的反向传播 你能使用Python来实现反向传播,我曾经在this Github repo上实现了反向传播算法. 反向传播的可视化 显示神经网络学习时相互作用的可视化,检查我的Neural Network visualization. 另外的资源 如果你发现这个教程对你有用并且想继续…
反向传播 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili 目录 反向传播 笔记 作业 笔记 在之前课程中介绍的线性模型就是一个最简单的神经网络的结构,其内部参数的更新过程如下: 对于简单的模型来说可以直接使用表达式的方式来更新权重,但是如果网络结构比较复杂(如下图),直接使用解析式的方式来更新显然有些复杂且不太可能实现. 反向传播就是为了解决这种问题.反向传播的基本思想就是将网络看成一张图,在图上传播梯度,从而使用链式传…
摘要 这篇文章提供了一个关于递归神经网络中某些概念的指南.与前馈网络不同,RNN可能非常敏感,并且适合于过去的输入(be adapted to past inputs).反向传播学习(backpropagation learning)是为了前馈网络而描述,并进行调整来满足我们的建模需要,并且推广到递归网络.这篇简要的文章的目的是搭建一个应用和理解递归神经元网络的图景(scene). 1.简介 广为人知的是,给定了一个隐藏节点的集合(可能非常大),传统的前馈网络可以用来近似任何空间受限的有限函数.…
TensorFlow Playground http://playground.tensorflow.org 帮助更好的理解,游乐场Playground可以实现可视化训练过程的工具 TensorFlow Playground的左侧提供了不同的数据集来测试神经网络.默认的数据为左上角被框出来的那个.被选中的数据也会显示在最右边的 “OUTPUT”栏下.在这个数据中,可以看到一个二维平面上有红色或者蓝色的点,每一个小点代表了一个样例,而点的颜色代表了样例的标签.因为点的颜色只有两种,所以这是 一个二…