最近一直在学习李宏毅老师的机器学习视频教程,学到和神经网络那一块知识的时候,我觉得单纯的学习理论知识过于枯燥,就想着自己动手实现一些简单的Demo,毕竟实践是检验真理的唯一标准!!!但是网上很多的与tensorflow或者神经网络相关的Demo教程都只是在验证官方程序的过程,而如何把这些程序变成自己可以真正利用的程序这一块的资料就比较少,就好比被“玩烂的"MNIST数据集(ML界的”hello world"),网上是有很多手写数字识别的教程,但那些利用的都是官方提供的数据集,这样就算验…
从一到二:利用mnist训练集生成的caffemodel对mnist测试集与自己手写的数字进行测试 通过从零到一的教程,我们已经得到了通过mnist训练集生成的caffemodel,主要包含下面四个文件: 接下来就可以利用模型进行测试了.关于测试方法按照上篇教程还是选择bat文件,当然python.matlab更为方便,比如可以迅速把识别错误的图片显示出来. 一.均值文件mean.binaryproto 在进行分类之前首先需要产生所有图片的平均值图片,真正分类时的每个图片都会先减去这张平均值图片…
本文将参考TensorFlow中文社区官方文档使用mnist数据集训练一个多层卷积神经网络(LeNet5网络),并利用所训练的模型识别自己手写数字. 训练MNIST数据集,并保存训练模型 # Python3 # 使用LeNet5的七层卷积神经网络用于MNIST手写数字识别 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_s…
通过从零到一的教程,我们已经得到了通过mnist训练集生成的caffemodel,主要包含下面四个文件: 接下来就可以利用模型进行测试了.关于测试方法按照上篇教程还是选择bat文件,当然python.matlab更为方便,比如可以迅速把识别错误的图片显示出来. 一.均值文件mean.binaryproto 在进行分类之前首先需要产生所有图片的平均值图片,真正分类时的每个图片都会先减去这张平均值图片再进行分类.这样的处理方式能够提升分类的准确率. 产生均值文件的方法是利用解决方案中的compute…
#!/usr/bin/env python3 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) import tensorflow as tf sess = tf.InteractiveSession() x = tf.placeholder(tf.float32, shape=[None, 784]) y…
利用神经网络算法的C#手写数字识别 转发来自云加社区,用于学习机器学习与神经网络 欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwritten_character_recognition.zip 下载源码 - 70.64 KB (原始地址) :nnhandwrittencharreccssource.zip 介绍 这是一篇基于Mike O'Neill 写的一篇很棒的文章:神经网络的手写字符识别(Neural Network for…
利用c++编写bp神经网络实现手写数字识别 写在前面 从大一入学开始,本菜菜就一直想学习一下神经网络算法,但由于时间和资源所限,一直未展开比较透彻的学习.大二下人工智能课的修习,给了我一个学习的契机.现将bp神经网络的推导和实践记录于此: 前置知识 微积分相关内容,如偏导,梯度等 (大一不懂偏导梯度,这就是我学不进去的原因) BP神经网络概况及计算方法 可以理解为一个多层的网络,包含输入层X,隐藏层H和输出层Y,其中隐藏层可以不止一层. 为了直观展示,隐藏层和输出层都被我拆成了两层进行讲解 以下…
利用神经网络算法的C#手写数字识别(二)   本篇主要内容: 让项目编译通过,并能打开图片进行识别.   1. 从上一篇<利用神经网络算法的C#手写数字识别>中的源码地址下载源码与资源, 注意,两者都要下载,资源里有训练数据集. 2. 下载后源码项目用VS打开,第一遍是编译不过的,会提示参数不正确. 将资源中的DATA文件夹考入到编译目录下,如Bin\Debug下, 即可编译通过. 目录如下:   3. 上篇文中所述的打开一个图片并识别的功能在代码中是没有实现的. 本篇我们将在此项目中实现.…
1 MNIST数据集 MNIST数据集主要由一些手写数字的图片和相应的标签组成,图片一共有10类,分别对应从0-9,共10个阿拉伯数字.原始的MNIST数据库一共包含下面4个文件,见下表. 训练图像一共有60000张,供研究人员训练出合适的模型.测试图像一共有10000张,供研究人员测试训练的模型的性能. 2 Softmax 回归 Softmax回归是一个线性的多类分类模型,实际上它是直接从Logistic回归模型转化而来的.区别在于Logistic 回归模型为两类分类模型,而Softmax 模…
1 为什么使用卷积神经网络 Softmax回归是一个比较简单的模型,预测的准确率在91%左右,而使用卷积神经网络将预测的准确率提高到99%. 2 卷积网络的流程 3 代码展示 # -*- coding: utf-8 -*- import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #读入数据 mnist = input_data.read_data_sets("MNIST_data/&qu…
欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwritten_character_recognition.zip 下载源码 - 70.64 KB (原始地址) :nnhandwrittencharreccssource.zip 介绍 这是一篇基于Mike O'Neill 写的一篇很棒的文章:神经网络的手写字符识别(Neural Network for Recognition of Handwritten Digits)而给出的一个…
caffe中训练和测试mnist数据集都是批处理,可以反馈识别率,但是看不到单张样本的识别效果,这里使用windows自带的画图工具手写制作0~9的测试数字,然后使用caffemodel模型识别. 1. 打开画图工具,设置画板宽高为28*28,然后分别画出0~9的数字,分别保存为0~9.bmp文件. 宽高属性修改: 手写的10个数字: 画图工具保存的这10张手写数字图像是彩色三通道的,需要转换成单通道灰度图像,这个转换可以通过OpenCV完成. 2. 使用OpenCV转换灰度图像 OpenCV的…
代码比较简单,没啥好说的,就做个记录而已.大致就是现建立graph,再通过session运行即可.需要注意的就是Variable要先初始化再使用. import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import matplotlib.pyplot as plt # 把下载的MNIST数据集放到mnist_link目录下,用TF提供的接口解析数据集 MNIST = input_dat…
在本篇博文当中,笔者采用了卷积神经网络来对手写数字进行识别,采用的神经网络的结构是:输入图片——卷积层——池化层——卷积层——池化层——卷积层——池化层——Flatten层——全连接层(64个神经元)——全连接层(500个神经元)——softmax函数,最后得到分类的结果.Flatten层用于将池化之后的多个二维数组展开成一维数组,再灌入全连接层的神经元当中. 首先导包: import keras from keras import layers from keras import models…
手写数字digits分类,这可是深度学习算法的入门练习.而且还有专门的手写数字MINIST库.opencv提供了一张手写数字图片给我们,先来看看 这是一张密密麻麻的手写数字图:图片大小为1000*2000,有0-9的10个数字,每5行为一个数字,总共50行,共有5000个手写数字.在opencv3.0版本中,图片存放位置为 /opencv/sources/samples/data/digits.png 我们首先要做的,就是把这5000个手写数字,一个个截取出来,每个数字块大小为20*20.直接将…
# -*- coding:utf-8 -*- import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import os import argparse import sys DATA_DIR = os.path.join('.', 'mnist_link') # ======================================= # COMMON OPERATIONS #…
import mnist_loader import network training_data, validation_data, test_data = mnist_loader.load_data_wrapper() print("training_data") print(type(training_data)) print(list(training_data)) print(training_data[0][0].shape) print(training_data[0][…
一.前言 本文会详细地阐述caffe-windows的配置教程.由于博主自己也只是个在校学生,目前也写不了太深入的东西,所以准备从最基础的开始一步步来.个人的计划是分成配置和运行官方教程,利用自己的数据集进行训练和利用caffe来实现别人论文中的模型(目前在尝试的是轻量级的SqueezeNet)三步走.不求深度,但求详细.因为说实话caffe-windows的配置当初花了挺多时间的,目前貌似还真没有从头开始一步步讲起的教程,所以博主就争取试着每一步都讲清楚吧. 这里说些题外话:之所以选择Sque…
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识别(二)--入门篇 基于tensorflow的MNIST手写数字识别(三)--神经网络篇 一.本文的意义 因为谷歌官方其实已经写了MNIST入门和深入两篇教程了,那我写这些文章又是为什么呢,只是抄袭?那倒并不是,更准确的说应该是笔记吧,然后用更通俗的语言来解释,并且补充更多,官方文章中没有详细展开的…
这个例子,是学习tensorflow的人员通常会用到的,也是基本的学习曲线中的一环.我也是! 这个例子很简单,这里,就是简单的说下,不同的tensorflow版本,相关的接口函数,可能会有不一样哟.在TensorFlow的中文介绍文档中的内容,有些可能与你使用的tensorflow的版本不一致了,我这里用到的tensorflow的版本就有这个问题. 另外,还给大家说下,例子中的MNIST所用到的资源图片,在原始的官网上,估计很多人都下载不到了.我也提供一下下载地址. 我的tensorflow的版…
TensorFlow 入门之手写识别(MNIST) 数据处理 一 MNIST Fly softmax回归 准备数据 解压 与 重构 手写识别入门 MNIST手写数据集 图片以及标签的数据格式处理 准备数据 MNIST是在机器学习领域中的一个经典问题.该问题解决的是把28x28像素的灰度手写数字图片识别为相应的数字,其中数字的范围从0到9. from IPython.display import Image  import base64  Image(data=base64.decodestrin…
一:MNIST数据集    下载地址 MNIST是一个包含很多手写数字图片的数据集,一共4个二进制压缩文件 分别是test set images,test set labels,training set images,training set labels training set包括60000个样本,test set包括10000个样本. test set中前5000个样本来自原始的NISTtraining set,后5000个样本来自原始的NIST test set,因此,前5000个样本比…
折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNIST手写数字库对CNN(卷积神经网络)进行训练,准确度达到98%以上时,再准备独家手写数字10个.画图软件编辑的数字10个共计20个,让训练好的CNN进行识别,考察其识别准确度. 调试代码: 坑1:ModuleNotFoundError: No module named 'google' 解决:pi…
目录 数据挖掘入门系列教程(八)之使用神经网络(基于pybrain)识别数字手写集MNIST 下载数据集 加载数据集 构建神经网络 反向传播(BP)算法 进行预测 F1验证 总结 参考 数据挖掘入门系列教程(八)之使用神经网络(基于pybrain)识别数字手写集MNIST 在本章节中,并不会对神经网络进行介绍,因此如果不了解神经网络的话,强烈推荐先去看<西瓜书>,或者看一下我的上一篇博客:数据挖掘入门系列教程(七点五)之神经网络介绍 本来是打算按照<Python数据挖掘入门与实践>…
MNIST手写数字识别教程 要开始带组内的小朋友了,特意出一个Pytorch教程来指导一下 [!] 这里是实战教程,默认读者已经学会了部分深度学习原理,若有不懂的地方可以先停下来查查资料 目录 MNIST手写数字识别教程 1 什么是MNIST? 2 使用Pytorch实现手写数字识别 2.1 任务目的 2.2 开发环境 2.3 实现流程 3 具体代码实现 3.1 数据预处理部分 3.1.1 初始化全局变量 3.1.2 构建数据集 3.2 训练部分 3.2.1 构建模型 3.2.2 构建迭代器与损…
from PIL import Image import numpy as np import tensorflow as tf import time bShowAccuracy = True # 加载手写图片 def loadHandWritingImage(strFilePath): im = Image.open(strFilePath, 'r') ndarrayImg = np.array(im.convert("L"), dtype='float') return ndar…
import numpy as np import tensorflow as tf import matplotlib import matplotlib.pyplot as plt import matplotlib.cm as cm from tensorflow.examples.tutorials.mnist import input_data # 训练的准确度目标 accuracyGoal = 0.98 # 是否已经达到指定的准确度 bFlagGoal = False; # 显示数字…
AI应用开发实战 - 手写识别应用入门 手写体识别的应用已经非常流行了,如输入法,图片中的文字识别等.但对于大多数开发人员来说,如何实现这样的一个应用,还是会感觉无从下手.本文从简单的MNIST训练出来的模型开始,和大家一起入门手写体识别. 在本教程结束后,会得到一个能用的AI应用,也许是你的第一个AI应用.虽然离实际使用还有较大的距离(具体差距在文章后面会分析),但会让你对AI应用有一个初步的认识,有能力逐步搭建出能够实际应用的模型. 建议和反馈,请发送到 https://github.com…
这篇文章中,我们将使用CNN构建一个Tensorflow.js模型来分辨手写的数字.首先,我们通过使之“查看”数以千计的数字图片以及他们对应的标识来训练分辨器.然后我们再通过此模型从未“见到”过的测试数据评估这个分辨器的精确度. 一.运行代码 这篇文章的全部代码可以在仓库TensorFlow.js examples中的tfjs-examples/mnist 下找到,你可以通过下面的方式clone下来然后运行这个demo: $ git clone https://github.com/tensor…
手写数字识别,神经网络领域的“hello world”例子,通过pytorch一步步构建,通过训练与调整,达到“100%”准确率 1.快速开始 1.1 定义神经网络类,继承torch.nn.Module,文件名为digit_recog.py import torch.nn as nn class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Sequential(nn.Conv2d(…