RNN入门(一)识别MNIST数据集】的更多相关文章

RNN介绍   在读本文之前,读者应该对全连接神经网络(Fully Connected Neural Network, FCNN)和卷积神经网络( Convolutional Neural Network, CNN)有一定的了解.对于FCNN和CNN来说,他们能解决很多实际问题,但是它们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有关系的 .而在现实生活中,我们输入的向量往往存在着前后联系,即前一个输入和后一个输入是有关联的,比如文本,语音,视频等,因此,我们需要了解深度学习中…
title: "Python实现bp神经网络识别MNIST数据集" date: 2018-06-18T14:01:49+08:00 tags: [""] categories: ["python"] 前言 训练时读入的是.mat格式的训练集,测试正确率时用的是png格式的图片 代码 #!/usr/bin/env python3 # coding=utf-8 import math import sys import os import numpy…
几种常见的优化函数比较:https://blog.csdn.net/w113691/article/details/82631097 ''' 基于Adam识别MNIST数据集 ''' import torch import torchvision import torchvision.transforms as transform import torch.nn from torch.autograd import Variable ''' 神经网络层级结构: 卷积层Conv1,Conv2()…
这次我们将建立一个卷积神经网络,它可以把MNIST手写字符的识别准确率提升到99%,读者可能需要一些卷积神经网络的基础知识才能更好的理解本节的内容. 程序的开头是导入TensorFlow: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data 接下来载入MNIST数据集,并建立占位符.占位符x的含义为训练图像,y_为对应训练图像的标签. # 读入数据 mnist = input_dat…
最近在摸mxnet和tensorflow.两个我都搭起来了.tensorflow跑了不少代码,总的来说用得比较顺畅,文档很丰富,api熟悉熟悉写代码没什么问题. 今天把两个平台做了一下对比.同是跑mnist,tensorflow 要比mxnet 慢一二十倍.mxnet只需要半分钟,tensorflow跑了13分钟. 在mxnet中如何开跑? cd /mxnet/example/image-classification python train_mnist.py我用的是最新的mxnet版本.运行脚…
''' Created on 2017年4月22日 @author: weizhen ''' import os import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data # 加载mnist_inference.py中定义的常量和前向传播的函数 import LeNet5_infernece # 配置神经网络的参数 BATCH_SIZE = 100 L…
import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE_SIZE = 28 NUM_CHANNELS = 1 NUM_LABELS = 10 # 第一层卷积层的尺寸和深度 CONV1_DEEP = 32 CONV1_SIZE = 5 # 第二层卷积层的尺寸和深度 CONV2_DEEP = 64 CONV2_SIZE = 5 # 全连接层的节点个数 FC…
import osimport lr as lrimport tensorflow as tffrom pyspark.sql.functions import stddevfrom tensorflow.keras import datasetsos.environ['TF_CPP_MIN_LOG_LEVEL']='2' #只打印error的信息(x,y),_=datasets.mnist.load_data()#x: [60k,28,28]#y: [60k]x=tf.convert_to_t…
import tensorflow as tf # 输入数据 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("E:\\MNIST_data", one_hot=True) # 定义网络的超参数 learning_rate = 0.001 training_iters = 200000 batch_size = 128 display_step =…
代码 https://github.com/s055523/MNISTTensorFlowSharp 数据的获得 数据可以由http://yann.lecun.com/exdb/mnist/下载.之后,储存在trainDir中,下次就不需要下载了. /// <summary> /// 如果文件不存在就去下载 /// </summary> /// <param name="urlBase">下载地址</param> /// <para…