Spark-SQL之DataFrame操作】的更多相关文章

Spark SQL 之 DataFrame 转载请注明出处:http://www.cnblogs.com/BYRans/ 概述(Overview) Spark SQL是Spark的一个组件,用于结构化数据的计算.Spark SQL提供了一个称为DataFrames的编程抽象,DataFrames可以充当分布式SQL查询引擎. DataFrames DataFrame是一个分布式的数据集合,该数据集合以命名列的方式进行整合.DataFrame可以理解为关系数据库中的一张表,也可以理解为R/Pyth…
本文讲解Spark的结构化数据处理,主要包括:Spark SQL.DataFrame.Dataset以及Spark SQL服务等相关内容.本文主要讲解Spark 1.6.x的结构化数据处理相关东东,但因Spark发展迅速(本文的写作时值Spark 1.6.2发布之际,并且Spark 2.0的预览版本也已发布许久),因此请随时关注Spark SQL官方文档以了解最新信息. 文中使用Scala对Spark SQL进行讲解,并且代码大多都能在spark-shell中运行,关于这点请知晓. 概述 相比于…
一.安装spark spark SQL是spark的一个功能模块,所以我们事先要安装配置spark,参考: https://www.cnblogs.com/lay2017/p/10006935.html 二.数据准备 演示操作将从一个类似json文件里面读取数据作为数据源,并初始化为dataframe,我们准备一个user.json文件 在/usr/local/hadoop/spark目录(可以自定义目录)下新建一个user.json文件内容如下: {"id" : "1201…
原博文出自于: http://www.cnblogs.com/BYRans/p/5003029.html 感谢! Spark SQL 之 DataFrame 转载请注明出处:http://www.cnblogs.com/BYRans/ 概述(Overview) Spark SQL是Spark的一个组件,用于结构化数据的计算.Spark SQL提供了一个称为DataFrames的编程抽象,DataFrames可以充当分布式SQL查询引擎. DataFrames DataFrame是一个分布式的数据…
转载自:  Spark SQL.DataFrame和Datase…
概述 Spark SQL是用于结构化数据处理的Spark模块.它提供了一个称为DataFrames的编程抽象,也可以作为分布式SQL查询引擎. Spark SQL也可用于从现有的Hive安装中读取数据.有关如何配置此功能的更多信息,请参阅Hive Tables部分. DataFrames DataFrame是组织成命名列的数据的分布式集合.它在概念上等同于关系数据库中的表或R / Python中的数据框架,但是在更加优化的范围内.DataFrames可以从各种来源构建,例如:结构化数据文件,Hi…
Spark SQL是处理结构化数据的Spark模块.它提供了DataFrames这样的编程抽象.同一时候也能够作为分布式SQL查询引擎使用. DataFrames DataFrame是一个带有列名的分布式数据集合.等同于一张关系型数据库中的表或者R/Python中的data frame,只是在底层做了非常多优化:我们能够使用结构化数据文件.Hive tables,外部数据库或者RDDS来构造DataFrames. 1. 開始入口: 入口须要从SQLContext类或者它的子类開始,当然须要使用S…
测试数据 sparkStu.text zhangxs chenxy wangYr teacher wangx teacher sparksql { ,"job":"chengxy", ,"job":"teacher", ,"job":"student" }   object CreateDataFream { //创建student对象 case class Student(name:S…
一.Spark SQL简介 Spark SQL是Spark中的一个子模块,主要用于操作结构化数据.它具有以下特点: 能够将SQL查询与Spark程序无缝混合,允许您使用SQL或DataFrame API对结构化数据进行查询: 支持多种开发语言: 支持多达上百种的外部数据源,包括Hive,Avro,Parquet,ORC,JSON和JDBC等: 支持HiveQL语法以及Hive SerDes和UDF,允许你访问现有的Hive仓库: 支持标准的JDBC和ODBC连接: 支持优化器,列式存储和代码生成…
一.Spark SQL简介 Spark SQL 是 Spark 中的一个子模块,主要用于操作结构化数据.它具有以下特点: 能够将 SQL 查询与 Spark 程序无缝混合,允许您使用 SQL 或 DataFrame API 对结构化数据进行查询: 支持多种开发语言: 支持多达上百种的外部数据源,包括 Hive,Avro,Parquet,ORC,JSON 和 JDBC 等: 支持 HiveQL 语法以及 Hive SerDes 和 UDF,允许你访问现有的 Hive 仓库: 支持标准的 JDBC…