首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
[笔记]线性回归&梯度下降
】的更多相关文章
[笔记]线性回归&梯度下降
一.总述 线性回归算法属于监督学习的一种,主要用于模型为连续函数的数值预测. 过程总得来说就是初步建模后,通过训练集合确定模型参数,得到最终预测函数,此时输入自变量即可得到预测值. 二.基本过程 1.初步建模.确定假设函数h(x)(最终预测用) 2.建立价值函数J(θ)(也叫目标函数.损失函数等,求参数θ用) 3.求参数θ.对价值函数求偏导(即梯度),再使用梯度下降算法求出最终参数θ值 4.将参数θ值代入假设函数 三.约定符号 x:自变量,即特征值 y:因变量,即结果 h(x):假设函数 J(θ…
线性回归 Linear regression(2)线性回归梯度下降中学习率的讨论
这篇博客针对的AndrewNg在公开课中未讲到的,线性回归梯度下降的学习率进行讨论,并且结合例子讨论梯度下降初值的问题. 线性回归梯度下降中的学习率 上一篇博客中我们推导了线性回归,并且用梯度下降来求解线性回归中的参数.但是我们并没有考虑到学习率的问题. 我们还是沿用之前对于线性回归形象的理解:你站在山顶,环顾四周,寻找一个下山最快的方向走一小步,然后再次环顾四周寻找一个下山最快的方向走一小步,在多次迭代之后就会走到最低点.那么在这个理解中,学习率其实是什么呢?学习率就是你走的步子有多长. 所以…
机器学习(1)之梯度下降(gradient descent)
机器学习(1)之梯度下降(gradient descent) 题记:最近零碎的时间都在学习Andrew Ng的machine learning,因此就有了这些笔记. 梯度下降是线性回归的一种(Linear Regression),首先给出一个关于房屋的经典例子, 面积(feet2) 房间个数 价格(1000$) 2104 3 400 1600 3 330 2400 3 369 1416 2 232 3000 4 540 ... ... .. 上表中面积和房间个数是输入参数,价格是所要输出的解.面…
Python实现——一元线性回归(梯度下降法)
2019/3/25 一元线性回归--梯度下降/最小二乘法_又名:一两位小数点的悲剧_ 感觉这个才是真正的重头戏,毕竟前两者都是更倾向于直接使用公式,而不是让计算机一步步去接近真相,而这个梯度下降就不一样了,计算机虽然还是跟从现有语句/公式,但是在不断尝试中一步步接近目的地. 简单来说,梯度下降的目的在我看来还是要到达两系数的偏导数函数值为零的取值,因此,我们会从"任意一点"开始不断接近,由于根据之前最小二乘法的推导,可以说方差的公式应该算一个二次函数...?总之,这么理解的话就算只用中…
ng机器学习视频笔记(一)——线性回归、代价函数、梯度下降基础
ng机器学习视频笔记(一) --线性回归.代价函数.梯度下降基础 (转载请附上本文链接--linhxx) 一.线性回归 线性回归是监督学习中的重要算法,其主要目的在于用一个函数表示一组数据,其中横轴是变量(假定一个结果只由一个变量影响),纵轴是结果. 线性回归得到的方程,称为假设函数(Hypothesis Function).当假设函数是线性函数时,其公式为: 二.代价函数 代价函数是用于评价线性回归,其公式为: 计算方式是计算每一个点在当前假设函数情况下,偏差的平方和,再取平均数.m即表示一共…
斯坦福机器学习视频笔记 Week1 线性回归和梯度下降 Linear Regression and Gradient Descent
最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更新,希望大家多多批评指正. Supervised Learning(监督学习) 在监督学习中,我们的数据集包括了算法的输出结果,比如具体的类别(分类问题)或数值(回归问题),输入和输出存在某种对应关系. 监督学习大致可分为回归(classification)和分类(regression). 回归:对…
Andrew Ng机器学习公开课笔记 -- 线性回归和梯度下降
网易公开课,监督学习应用.梯度下降 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 线性回归(Linear Regression) 先看个例子,比如,想用面积和卧室个数来预测房屋的价格 训练集如下 首先,我们假设为线性模型,那么hypotheses定义为 , 其中x1,x2表示面积和#bedrooms两个feature 那么对于线性模型,更为通用的写法为 其中把θ和X看成向量,并且x0=1,就可以表示成最后那种,两个向量相乘的形式 那…
吴恩达机器学习笔记7-梯度下降III(Gradient descent intuition) --梯度下降的线性回归
梯度下降算法和线性回归算法比较如图: 对我们之前的线性回归问题运用梯度下降法,关键在于求出代价函数的导数,即: 我们刚刚使用的算法,有时也称为批量梯度下降.实际上,在机器学习中,通常不太会给算法起名字,但这个名字”批量梯度下降”,指的是在梯度下降的每一步中,我们都用到了所有的训练样本,在梯度下降中,在计算微分求导项时,我们需要进行求和运算,所以,在每一个单独的梯度下降中,我们最终都要计算这样一个东西,这个项需要对所有…
机器学习算法整理(一)线性回归与梯度下降 python实现
回归算法 以下均为自己看视频做的笔记,自用,侵删! 一.线性回归 θ是bias(偏置项) 线性回归算法代码实现 # coding: utf-8 get_ipython().run_line_magic('matplotlib', 'inline') import matplotlib.pylab as plt import numpy as np from sklearn import datasets # $h_{\theta}(x)=\theta_0+\theta_1x_1+\the…
【深度学习】线性回归(Linear Regression)——原理、均方损失、小批量随机梯度下降
1. 线性回归 回归(regression)问题指一类为一个或多个自变量与因变量之间关系建模的方法,通常用来表示输入和输出之间的关系. 机器学习领域中多数问题都与预测相关,当我们想预测一个数值时,就会涉及到回归问题,如预测房价等.(预测不仅包含回归问题,还包含分类问题) 线性回归(Linear Regression),自变量 $\textbf x$ 与因变量 $y$ 之间的关系是线性的,即 $y$ 可以表示为 $\textbf x$ 中元素的加权和. 我们用 $n$ 来表示数据集中的样本数,对索…