用CNN分类Mnist http://www.bubuko.com/infodetail-777299.html /DeepLearning Tutorials/keras_usage 提取出来的特征训练SVMhttp://www.bubuko.com/infodetail-792731.html ./dive_into _keras 自己动手写demo实现…
本文亮点: 将用于自然语言处理的CNN架构,从keras0.3.3搬运到了keras2.x,强行练习了Sequential+Model的混合使用,具体来说,是Model里嵌套了Sequential. 本文背景: 暑假在做一个推荐系统的小项目,老师让我们搜集推荐系统领域Top5的算法和模型,要求结合深度学习. 我和小伙伴选择了其中的两篇文献深入研究,我负责跑通文献Convolutional Matrix Factorization for Document Context-Aware Recomm…
对于即将到来的人工智能时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的领域,会不会感觉马上就out了?作为机器学习的一个分支,深度学习同样需要计算机获得强大的学习能力,那么问题来了,我们究竟要计算机学习什么东西?答案当然是图像特征了.将一张图像看做是一个个像素值组成的矩阵,那么对图像的分析就是对矩阵的数字进行分析,而图像的特征,就隐藏在这些数字规律中.深度学习对外推荐自己的一个很重要的点——深度学习能够自动提取特征.本文主要介绍卷积层提取特征的原理过程,文…
在使用tensorflow分类MNIST数据集中,最容易遇到的问题是下载MNIST样本的问题. 一般是通过使用tensorflow内置的函数进行下载和加载, from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data", one_hot=True) 但是我使用时遇到了“urllib.error.URLError: <urlopen…
原帖地址:https://www.jiqizhixin.com/articles/2018-04-03-5 K 近邻算法,简称 K-NN.在如今深度学习盛行的时代,这个经典的机器学习算法经常被轻视.本篇教程将带你使用 Scikit-Learn 构建 K 近邻算法,并应用于 MNIST 数据集.然后,作者将带你构建自己的 K-NN 算法,开发出比 Scikit-Learn K-NN 更准更快的算法. 1. K 近邻分类模型 K 近邻算法是一种容易实现的监督机器学习算法,并且其分类性能的鲁棒性还不错…
[转]CNN+BLSTM+CTC的验证码识别从训练到部署 转载地址:https://www.jianshu.com/p/80ef04b16efc 项目地址:https://github.com/kerlomz/captcha_trainer 作者:_Coriander 1. 前言 本项目适用于Python3.6,GPU>=NVIDIA GTX1050Ti,原master分支已经正式切换为CNN+LSTM+CTC的版本了,是时候写一篇新的文章了. 长话短说,开门见山,网络上现有的代码以教学研究为主…
自编码(Autoencoder)介绍 Autoencoder是一种无监督的学习算法,将输入信息进行压缩,提取出数据中最具代表性的信息.其目的是在保证重要特征不丢失的情况下,降低输入信息的维度,减小神经网络的处理负担.简单来说就是提取输入信息的特征.类似于主成分分析(Principal Components Analysis,PAC) 对于输入信息X,通过神经网络对其进行压缩,提取出数据的重要特征,然后将其解压得到数据Y,然后通过对比X与Y求出预测误差进行反向传递,逐步提升自编码的准确性.训练完成…
LSTM是RNN的一种算法, 在序列分类中比较有用.常用于语音识别,文字处理(NLP)等领域. 等同于VGG等CNN模型在在图像识别领域的位置.  本篇文章是叙述LSTM 在MNIST 手写图中的使用. 用来给初步学习RNN的一个范例,便于学习和理解LSTM . 先把工作流程图贴一下: 代码片段 : 数据准备 def makedata(): img_rows, img_cols = 28, 28 mnist = fetch_mldata("MNIST original") # resc…
卷积:神经网络不再是对每个像素做处理,而是对一小块区域的处理,这种做法加强了图像信息的连续性,使得神经网络看到的是一个图像,而非一个点,同时也加深了神经网络对图像的理解,卷积神经网络有一个批量过滤器,通过重复的收集图像的信息,每次收集的信息都是小块像素区域的信息,将信息整理,先得到边缘信息,再用边缘信息总结从更高层的信息结构,得到部分轮廓信息,最后得到完整的图像信息特征,最后将特征输入全连接层进行分类,得到分类结果. 卷积: 经过卷积以后,变为高度更高,长和宽更小的图像,进行多次卷积,就会获得深…
本文参考Yann LeCun的LeNet5经典架构,稍加ps得到下面适用于本手写识别的cnn结构,构造一个两层卷积神经网络,神经网络的结构如下图所示: 输入-卷积-pooling-卷积-pooling-全连接层-Dropout-Softmax输出 第一层卷积利用5*5的patch,32个卷积核,可以计算出32个特征.然后进行maxpooling.第二层卷积利用5*5的patch,64个卷积核,可以计算出64个特征.然后进行max pooling.卷积核的个数是我们自己设定,可以增加卷积核数目提高…