一些矩阵范数的subgradients】的更多相关文章

目录 引 正交不变范数 定理1 定理2 例子:谱范数 例子:核范数 算子范数 定理3 定理4 例子 \(\ell_2\) <Subgradients> Subderivate-wiki Subgradient method-wiki <Subgradient method> Subgradient-Prof.S.Boyd,EE364b,StanfordUniversity <Characterization of the Subdifferential of Some Mat…
目录 定义 上镜图解释 次梯度的存在性 性质 极值 非负数乘 \(\alpha f(x)\) 和,积分,期望 仿射变换 仿梯度 混合函数 应用 Pointwise maximum 上确界 supremum Minimization over some variables 拟凸函数 <Subgradients> Subderivate-wiki Subgradient method-wiki <Subgradient method> Subgradient-Prof.S.Boyd,E…
格式:n=norm(A,p)功能:norm函数可计算几种不同类型的返回A中最大一列和,即max(sum(abs(A))) 2 返回A的最大奇异值,和n=norm(A)用法一样 inf 返回A中最大一行和,即max(sum(abs(A’))) ‘fro’ A和A‘的积的对角线和的平方根,即sqrt(sum(diag(A'*A))) 2.如果A为向量 norm(A,p) 返回向量A的p范数.即返回 sum(abs(A).^p)^(1/p),对任意 1<p<+∞. norm(A) 返回向量A的2范数…
批量梯度下降的逻辑回归可以参考这篇文章:http://blog.csdn.net/pakko/article/details/37878837 看了一些Scala语法后,打算看看MlLib的机器学习算法的并行化,那就是逻辑回归,找到package org.apache.spark.mllib.classification下的LogisticRegressionWithSGD这个类,直接搜train()函数. def train( input: RDD[LabeledPoint], numIter…
Abstract We describe and analyze a simple and effective iterative algorithm for solving the optimization problem cast by Support Vector Machines (SVM). Our method alternates between stochastic gradient descent steps and projection steps. We prove tha…
对于从事机器学习的人,python+numpy+scipy+matplotlib是重要的基础:它们基本与matlab相同,而其中最重要的当属numpy:因此,这里列出100个关于numpy函数的问题,希望读者通过"题海"快速学好numpy:题中示例可以粘贴运行,读者可以边执行边看效果: 1  如何引入numpy? import numpy as np(或者from numpy import *) 2  如何定义一个数组? import numpy as np x = np.array(…
格式:n=norm(A,p)功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM   Matrix or vector norm.    For matrices...      NORM(X) is the largest singular value of X, max(svd(X)).      NORM(X,2) is the same as NORM(X).      NORM(X,1) is the 1…
范数就是长度的一种推广形式,数学语言叫一种度量.比如有一个平面向量,有两个分量来描述:横坐标和纵坐标.向量的二范数就是欧几里得意义下的这个向量的长度.还有一些诸如极大值范数,就是横坐标或者纵坐标的最大的那个,也可以视为这个向量的一个度量,具体来说就代表了这个向量在坐标轴上投影的最大长度.推广到一般的N维空间,范数还是类似的.对于矩阵,可以理解了多个向量放在一起.矩阵的行范数和列范数都是从不同的角度出发,选择了这组向量元素之和最大的作为矩阵范数.代表了该矩阵在N维空间中所“覆盖”的一个范围.矩阵的…
格式:n=norm(A,p)功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM Matrix or vector norm. For matrices... NORM(X) is the largest singular value of X, max(svd(X)). NORM(X,2) is the same as NORM(X). NORM(X,1) is the 1-norm of X, the larg…
摘要: 针对于单一核在处理多数据源和异构数据源方面的不足,多核方法应运而生.本文是将多核方法应用于FCM算法,并对算法做以详细介绍,进而采用MATLAB实现. 在这之前,我们已成功将核方法应用于FCM算法,在很大程度上解决了样本线性不可分的情况.但是这种单一核局限于对数据的某一特征进行有效提取,若一个样本含有多个特征,且遵循不同的核分布,单一核学习就不适用,所以说单一核在处理多数据源以及异构数据源的不足是越发明显. 针对于单一核学习不足,我们可以同时结合多个核函数对数据的多种特征进行同步描述,并…